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Abstract Motivated by several papers which propose statistical inference assuming
independence of wavelet coefficients for both short- as well as long-range dependent
time series, we focus exemplary on the sample variance and investigate the influence
of the dependence between wavelet coefficients to this statistic. To this end, we derive
asymptotic distributional properties of the sample variance for a time series which is
synthesized ignoring some or all dependence between wavelet coefficients. We show that
the second order properties differ from the ones of the true time series whose wavelet
coefficients have the same marginal distribution except in the independent Gaussian
case. This holds true even if the dependency is correct within each level and only the
dependence between levels is ignored. For the example of sample autocovariances and
sample autocorrelations at lag one, we indicate that already first order properties are
erroneous in these cases. In a second step, several non-parametric bootstrap schemes
in the wavelet domain are investigated which take more and more dependence into
account until finally the full dependency is mimicked. We obtain very similar results,
where only a bootstrap mimicking the full covariance structure correctly can be valid
asymptotically. A simulation study supports our theoretical findings for the wavelet
domain bootstraps. For long-range dependent time series with long-memory parameter
d > 1/4, we show that some additional problems occur which cannot be solved easily
without using additional information for the bootstrap.
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1. Introduction

1. Introduction

In the last 20-30 years wavelet analysis has become a useful and popular tool for statisti-
cal data analysis, where its advantages over the classical Fourier analysis lies in the fact
that it is local in time and frequency. The books by Nason (2010), Percival and Walden
(2000) and Vidakovic (2009) give a nice overview over current applications in statis-
tics, where the book by Percival and Walden (2000) focuses on time series applications.
While most applications coming from the area of signal processing have been treated
extensively in the engineering literature, there has been some interest in the statistical
properties of wavelet coefficients of time series.

This paper focuses on the question how much information the dependence between
wavelet coefficients contains. More precisely, we investigate the effect of neglecting this
dependence on the asymptotic variance of a given statistic. The results help to under-
stand the asymptotic behavior of related wavelet based resampling techniques. Finally,
we investigate the potential of wavelet based resampling methods for a long-memory
parameter d > 1/4. All three results urge to be extremely careful with inferential results
based on the independence assumption of wavelet coefficients within as well as between
scales.

Wavelet methods are related to Fourier analysis, where the Fourier coefficients have the
nice property of being asymptotically independent (but not identically distributed), a
fact, that can be exploited in the estimation of such fundamental time series character-
istics as the spectral density or autocorrelations. It has also given rise to a multitude of
useful frequency domain bootstrap method, for recent reviews we refer to Paparoditis
(2002), Kreiss and Paparoditis (2011) and Kreiss and Lahiri (2012).

The corresponding statistical inference is related to using the Whittle likelihood (Whittle
(1957)) for statistical inference of time series, which has not only been successfully
applied to Frequentist but also to Bayesian statistical inference (see e.g. Carter and Kohn
(1997)). However, as shown by Contreras-Cristán et al. (2006) the loss of efficiency can
be substantial.

Similarly, wavelet transforms also frequently exhibit a whitening effect leading to less
correlated wavelet coefficients even for long-range dependent time series whose long-
memory covariance structure in the time domain is very dense (see e.g. Dijkerman and
Mazumdar (1994), Craigmile and Percival (2005), Kaplan and Kuo (1993), Tewfik and
Kim (1992), Fan (2003), Mielniczuk and Wojdyllo (2007) or Theorem 9.2.2 in Chapter
9.5.3 in Vidakovic (2009) as well as Proposition 13.1 in Walter (1994)). This whitening
effect has first been exploited by Wornell and Oppenheim (1992) for the analysis of 1/f -
processes and later been pursued by others (confer e.g. Jensen (2000) or Craigmile et al.
(2005)). Flandrin (1992) and McCoy and Walden (1996) additionally propose to make
use of this effect for the synthesis of stationary long-memory processes.

Moulines et al. (2007a,b, 2008) and Faÿ et al. (2009) propose to use a pseudo-maximum-
likelihood estimator based on the independence assumption between wavelet coefficients
to estimate the long-memory parameter in long-range dependent time series. They pro-
vide rigorous asymptotic theory under misspecification of this likelihood for a large class
of time domain models including Gaussian linear processes. The aim of this paper is to
shed light on the asymptotic properties of wavelet based resampling techniques, which
have been proposed but only empirically been studied in the literature. Percival et al.
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(2000) adopt the term wavestrapping to use the whitening effect of the wavelet trans-
form to bootstrap (long-memory) time series, where the main advantage is that the
long-memory parameter d does not need to be known or estimated to obtain bootstrap
time series in the time domain. A related approach has been proposed by Feng et al.
(2005) using an AR-bootstrap in the wavelet domain to incorporate some of the depen-
dence between wavelet coefficients. Sabatini (1999) proposes to use a level-wise moving
block bootstrap for the construction of confidence intervals, while Angelini et al. (2005)
propose a levelwise stationary bootstrap for hierarchical processes. Different versions
of block-type bootstrap schemes have been applied to wavelet leaders instead of wavelet
coefficients for multifractal analysis in Wendt et al. (2007), Wendt and Abry (2007) and
Wendt et al. (2009).

Bullmore et al. (2001), Breakspear et al. (2003) and Whitcher (2006) use a related
wavelet-based bootstrap for the analysis of functional magnetic resonance imagining
(fMRI) experiments. Ko and Vannucci (2006) propose to use an approximate likelihood
based on uncorrelated wavelet coefficients for Bayesian inference of long-memory time
series and have recently applied this approach to fMRI data (confer Jeong et al. (2013)).
On the other hand, empirical evidence by Aston et al. (2005) indicate that independence
between wavelet coefficients cannot be assumed for fMRI data.

In this paper, we aim to shed light on the question how much information is actually
coded in the dependence between wavelet coefficients by analyzing its asymptotic effect
on autocovariances and autocorrelations, where we focus on the statistic of the sample
variance. This is the key to understanding the asymptotics of wavelet based resampling
methods. We choose the sample variance for that purpose because its analysis in the
wavelet domain has been addressed extensively in the literature (cf. e.g. Percival and
Mondal (2012)) and it is the simplest statistic for which this analysis can be applied.
The sample mean is coded in the final scaling coefficient, so that the information in the
wavelet coefficients do not help to explain its distributional properties. This is similar
to Fourier analysis, where the sample mean is also coded as the coefficient at frequency
0 and needs to be treated differently from the other frequencies; see Proposition 10.3.1
in Brockwell and Davis (1991).

In Section 2, we introduce the discrete wavelet transform (DWT) and provide most of
the notation used throughout the paper. In Section 2.1, we compare the asymptotic
distribution of the sample variance for a given time series with the asymptotic distribu-
tion for a (synthesized) time series with wavelet coefficients that have the same marginal
distribution but ignore the dependency between coefficients. It turns out that the two
distributions differ for the case of a simple 1-dependent (i.e. Moving-Average) Gaussian
time series, but also for autoregressive Gaussian time series. In the non-Gaussian case,
we find that they differ already for i.i.d. data. In a next step, we investigate in Section 2.2
the situation where the dependence between coefficients at the same level is mimicked
correctly and merely the dependence between levels is ignored. This is of interest, be-
cause it is sometimes argued in the literature that the dependence across levels is smaller
and can therefore be ignored more easily; see e.g. Sabatini (1999) and Angelini et al.
(2005) and the analysis of AR(1) data based on mutual dependence between interscale
and intrascale wavelet coefficients by Liu and Moulin (2000). Unfortunately, while this
improves the situation to some extent, it still yields asymptotically inconsistent results.
Somewhat surprisingly, the influence of the dependence between levels seems to be even
larger than within levels at least for the Haar wavelet basis. In Section 2.3, we address
sample autocovariances and autocorrelations at lag one and prove that already their first
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order asymptotics are erratic for the corresponding synthesized time series.

In Section 3 we consider several nonparametric bootstrap procedures in the wavelet do-
main, where more and more of the dependency structure is taken into account. We
analyse distributional properties of the corresponding bootstrap sample variance, where
it becomes apparent that the same restrictions as in Section 2 apply. In the last step,
we propose a new bootstrap scheme, which does have the potential to yield consistent
results but at the expense of being very complicated, which seems inappropriate in a
situation, where a standard block bootstrap yields consistent results and has good small
sample properties. We illustrate our theoretical findings by some simulations. Be-
cause the block bootstrap can no longer work for long-range dependent time series with
long-memory parameter d > 1/4, we shed some light on the validity of wavelet domain
resampling methods in that situation in Section 4. It turns out that even the single
wavelet coefficient of the coarsest scale has a non-negligible influence on the asymptotic
distribution of the sample variance. Because this coefficient can never be mimicked cor-
rectly by standard resampling methods simply because there is no duplicated information
as n increases, all such methods fail. A possible way around are subsampling methods
if the long-memory parameter d is known but then this methodology could immediately
be applied to the statistic of interest in the time domain; see Chapter 10 in Lahiri (2003)
and Beran et al. (2013), Chapter 10. Finally, Section 5 gives some conclusions, while
the proofs are given in a supplement file.

In addition to our theoretical findings and our own small simulation study, there are
already several extensive simulation studies in the literature supporting our theoretical
findings (cf. Sabatini (1999); Percival and Walden (2000); Angelini et al. (2005); Feng
et al. (2005); Tang et al. (2008)). Furthermore, the data analysis in Aston et al. (2005)
indicates that the independence assumption is not justified for fMRI data and can lead
to large statistical errors.

2. The influence of dependence between wavelet coefficients

In this section we quantify the impact of dependence between wavelet coefficients by
focusing on the asymptotic distribution of the sample variance of a real-valued sta-
tionary time series in comparison to the sample variance of a synthesized time series,
where the marginal distributions of the coefficients are the same but all coefficients
respectively coefficients of different scales are independent. Additionally, sample au-
tocovariances/autocorrelations at lag one are addressed in Section 2.3. To simplify the
considerations, we assume that X1, . . . , Xn is a stationary linear time series with mean
zero and consider the sample variance

Tn(X) =
1

n

n∑
t=1

(
Xt − X̄n

)2
=

1

n

n∑
t=1

X2
t − X̄2

n, X̄n =
1

n

n∑
t=1

Xt. (2.1)

In order to understand the effect of ignoring dependence between wavelet coefficients on
the asymptotic distribution of the above sample variance in the dependent case, it is
useful to remember the asymptotic distributions as given in the following two theorems.
First, in Theorem 2.1, the short-range dependent (SRD) case is considered, where we
explicitly give the formula for the asymptotic variance for some important examples
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that will be considered in detail below. This result can be found in Proposition 7.3.4 in
Brockwell and Davis (1991).

Theorem 2.1 (Asymptotics for the sample variance under SRD).

(i) Let {Xt, t ∈ Z} be a linear process with Xt =
∑∞

ν=−∞ ανεt−ν , where {εt, t ∈
Z} with E(εt) = 0, E(ε2t ) = σ2 ∈ (0,∞), E(ε4t ) = ησ4 ∈ [0,∞) is an i.i.d.
white noise process,

∑∞
ν=−∞ |αν | < ∞ and γX(h) = E(Xt+hXt). Then, it holds

√
n (Tn(X)− γX(0))

D→ N (0, V ) with

V = γ2X(0) (η − 3) + 2
∞∑

h=−∞
γ2X(h), (2.2)

which simplifies to V = 2
∑∞

h=−∞ γ
2
X(h) if {Xt, t ∈ Z} is Gaussian.

(ii) For the i.i.d. situation with Xt = εt, i.e. αν = 0 for all ν 6= 0, the variance in (2.2)
simplifies to

V = σ4(η − 3) + 2σ4. (2.3)

(iii) If {Xt, t ∈ Z} is Gaussian and 1-dependent, i.e. γX(h) = 0 for all |h| > 1, we have
Xt = α1εt−1 + εt and the variance in (2.2) simplifies to

V = 2γ2X(0) + 4γ2X(1). (2.4)

As we treat also long-range dependent (LRD) time series in Sections 3 and 4 below, we
provide in Theorem 2.2 the correct asymptotic distributions of the sample variance for
FARIMA(p,d,q)-processes, which constitute an important example of LRD time series
with long-memory parameter d. These results can be found in Hosking (1996), Theorems
3–5.

Theorem 2.2 (Asymptotics for the sample variance under LRD). Let {Xt, t ∈ Z} be
a linear process as in Theorem 2.1 (i) but with

∑∞
ν=−∞ |aν | = ∞ such that γX(r) =

O(|r|2d−1) as |r| → ∞ with 0 < d < 1/2. Then, we have

a(n, d)(Tn(X)− γX(0))
D−→ Zd, (2.5)

where Zd is a nondegenerate random variable, which is Gaussian for 0 < d 6 1/4 and
Rosenblatt for 1/4 < d < 1/2 and

a(n, d) =


√
n, 0 6 d < 1/4,√
n/ log n, d = 1/4,

n1−2d, 1/4 < d < 1/2.

(2.6)

Let O be an orthonormal transformation, i.e. OTO = OOT = Id, where Id denotes the
identity matrix. Then, we define the coefficients corresponding to the transformation of
X by CX = (cX(1), . . . , cX(n))T , that is, CX = OX. With the exception of Theo-
rem 2.3 we will focus on wavelet transforms W and additionally assume for simplicity
that n = 2D for some D ∈ N. In time series analysis, where only discrete time points
are observed, discrete versions of wavelets (similar to the discrete Fourier transform) are
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used. We will follow the notation (and ordering) of Chapter 4 in Percival and Walden
(2000). Such wavelet bases are constructed from a wavelet filter {hj : j = 0, . . . ,M − 1}
with some given width M = 2m 6 n for some integer m fulfilling

M−1∑
j=0

hj = 0,

M−1∑
j=0

h2j = 1,

M−1∑
j=0

hjhj+2k = 0 for all k ∈ Z \ {0},

h0 6= 0, hM−1 6= 0.

The first n/2 rows h1,i, 1 6 i 6 n/2, of the orthogonal matrix W = (W (i, j))i,j=1,...,n

are obtained by circularly shifting the (row) vector h = (h1, h0, 0, . . . , 0, hM−1, . . . , h2)
by 2(i− 1) to the right, i.e.

h1,i := W (i, ·) = hS2(i−1), i = 1, . . . , n/2, (2.7)

where

S =


0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 . . . 0 1
1 0 . . . 0 0

 .

The next n/4 matrix rows are calculated by means of the Pyramid algorithm, which uses
a ’quadrature mirror’ filter gl = (−1)lgM−1−l in a similar way as above to obtain so called
scaling coefficients, which are then transformed to wavelet coefficients by applying the
original filter h (and its evenly shifted versions) to those scaling coefficients. Details can
be found in the book by Percival and Walden (2000), Chapter 4.4 – 4.6. Consequently,
the original time series is filtered with h2,1, which has 3M − 2 (circularly consecutive)
elements, where at least the first and last are non-zero, while all other elements of the
vector are zero, i.e.

h2,1 = (h
(2)
3 , . . . , h

(2)
0 , 0, . . . , 0, h

(2)
3M−3, . . . , h

(2)
4 ) (2.8)

with h
(2)
0 6= 0 as well as h

(2)
3M−1 6= 0 (only depending on h0, . . . , hM−1). The next n/4− 1

rows oft the wavelet matrix are obtained by shifting h2,1 successively by 4 elements
to the right (in a circular way), i.e. h2,i = h2,1 S

4(i−1), i = 1, . . . , n/4. As n = 2D,
this procedure can be continued until only one scaling coefficient remains which is given
by 1/

√
n (1, . . . , 1) constituting the last row of the matrix W (confer Exercise 97 in

Percival and Walden (2000)). At scale k we obtain (confer page 152 in Percival and
Walden (2000))

hk,1 = (h
(k)

2k−1, . . . , h
(k)
0 , 0, . . . , 0, h

(k)
Mk−1, . . . , h

(k)

2k
), (2.9)

with Mk = (2k−1)(M−1)+1, which is the number of circularly consecutive (potentially)
non-zero elements of hk,1. The next n/2k − 1 elements are obtained by shifting hk,1

successively by 2k elements to the right (in a circular way), i.e. hk,i := hk,1S
2k(i−1),

i = 1, . . . , n/2k. In particular, we get for l < dMk

2k
e

dk(l) =
l2k−1∑
j=0

h
(k)
j Xl2k−j +

Mk−1∑
j=l2k

h
(k)
j Xn+l2k−j , (2.10)
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as well as for l > dMk

2k
e, i.e. if no circular wrapping is present,

dk(l) =

Mk−1∑
j=0

h
(k)
j Xl2k−j . (2.11)

Often, the wavelet transform is stopped at a certain point and the scaling coefficients
no longer split into more wavelet coefficients. If this approach is taken in the following
analysis, we reach the same statistical conclusions as the arguments in the remainder of
this section are (with the exception of the explicit formulas for the Haar wavelet) only
based on the first and second level of wavelet coefficients (see also Remarks 2.1 and 2.3).
In conclusion, the matrix W is given by

W
(
n
(

1− (1/2)k−1
)

+ j, ·
)

= hk,j , k = 1, . . . , D, j = 1, . . . , nk,

W (n, ·) =
1√
n

(1, . . . , 1) =
1√
n

1T , (2.12)

where we set nk = n/2k. Correspondingly, we obtain the following wavelet coefficients
(plus the final scaling coefficient)

DX = W X = (dX,1(1), . . . , dX,1(n/2), dX,2(1), . . . , dX,2(n/4), . . . , dX,D(1), vX,D(1))T

(2.13)

with vX,D(1) =
√
n X̄n. In this notation, dX,k(l) is the lth coefficient belonging to the

kth level.

The simplest discrete wavelets, the so called Haar wavelets, are obtained from h0 =
−1/
√

2 and h1 = 1/
√

2 with M = 2. In this case, the general formula

hk,j(p) = 2−k/2
(

1{(j−1)2k<p6(j−1)2k+2k−1} − 1{(j−1)2k+2k−1<p6j2k}

)
(2.14)

holds. More explicitly, for the first level k = 1, we get

h1,1 =
1√
2

(1,−1, 0, . . . , 0), h1,2 =
1√
2

(0, 0, 1,−1, 0, . . . , 0), . . . ,h1,n/2 =
1√
2

(0, . . . , 0, 1,−1),

for k = 2,

h2,1 =
1

2
(1, 1,−1,−1, 0, . . . , 0), h2,2 =

1

2
(0, 0, 0, 0, 1, 1,−1,−1, 0, . . . , 0),

. . . ,h2,n/4 =
1

2
(0, . . . , 0, 1, 1,−1,−1)

etc. for k ≥ 3. That is, hk,1 is given by a vector with first 2k−1 times 1 followed by 2k−1

times −1 and zero elsewhere, scaled by 1/2k/2. The vector hk,j is obtained by shifting
hk,1 by (j − 1)2k to the right. The Haar wavelets are the simplest wavelets from the
class of Daubechies wavelets which were introduced by Daubechies (1992) by imposing
certain regularity conditions based on vanishing moments; compare e.g. Percival and
Walden (2000), Section 11.9.
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2. The influence of dependence between wavelet coefficients

2.1. Ignoring dependence between wavelet coefficients

In this section we analyze how much information is lost by ignoring all dependence
between coefficients. To quantify this, we consider the following synthesized time series
with independent coefficients in the wavelet (or more general transformation) domain,
which have the same marginal distributions as the coefficients belonging to the original
time series {Xt}:

Y = (Y1, . . . , Yn)T = OTCY , CY = (cY (1), . . . , cY (n))T , (2.15)

where {cY (1), . . . , cY (n)} are independent with cY (j)
D
= cX(j). It is important to note

that the distribution of Y depends on the distribution of X but ignores all dependence
between the coefficients. If O = W is a wavelet transform, we write Y = W TDY with

DY = (dY ,1(1), . . . , dY ,1(n1), dY ,2(1), . . . , dY ,2(n2), . . . , dY ,D(1), vY ,D(1))T ,
(2.16)

where {dY ,k(l), k = 1, . . . , D, l = 1, . . . , nk = n/2k} are independent with dY ,k(l)
D
=

dX,k(l). The sample variance Tn(·) can be written based only on the wavelet coefficients,
hence does not depend on the scaling coefficient (confer Lemma A.1).

This setup has explicitely been assumed by Craigmile et al. (2005) in order to develop
a rigorous and valid (asymptotic) theory. However, as the below theorem indicates, the
corresponding statistical inference such as confidence bounds have to be handled with
care as the dependence between coefficients is not in general asymptotically negligible
(not even for Gaussian data) and may lead to a systematic error. Nevertheless, in many
situations this model error may be smaller than an estimation error associated with a
truly nonparametric procedure or nonparametric inference may not be feasible at all.

The following theorem gives the asymptotic distribution of the sample variance as defined
in (2.1) of the synthesized time series {Yt} based on an i.i.d. sample {Xt}.

Theorem 2.3 (i.i.d. case). Let {Xt} be i.i.d. with EXt = 0 and E |Xt|4 < ∞ and
denote by {Yt} the corresponding synthesized time series as given in (2.15) ignoring all
dependence between coefficients.

(a) Then, it holds ETn(Y ) = ETn(X), but

n varTn(Y ) = λOnσ
4 (η − 3) + 2σ4 +O

(
1

n

)
,

where 0 < λOn 6 1. Furthermore, we get the following assertions about λOn:

(i) It holds λOn = 1 iff On is a permutation matrix, i.e. has exactly one 1 in every
row and column and all other entries are zeros.

(ii) If On = W n is a discrete wavelet matrix based on the filter h0, . . . , hM−1, then
we get the exact representation

n varTn(Y ) = λWnσ
4 (η − 3) +

(
2− 2

n

)
σ4,
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2. The influence of dependence between wavelet coefficients

where λWn is bounded away from one, i.e.

λWn 6
1

2
+

1

2

M−1∑
j=0

h4j

 < 1.

(iii) If On = W n,H is the Haar-wavelet transform, then λWn,H
→ 1/3.

(b) If additionally E |Xt|6 <∞ and X2
t is non-degenerate, then

Tn(Y )− ETn(Y )√
varTn(Y )

D−→ N (0, 1).

In fact, for permutation matrices as in (a)(i) due to the exchangeability of the original
time series the synthesized time series does not only mimic the marginal distribution
of the coefficients correctly but the full joint distribution. In all other cases while the
coefficients are uncorrelated by definition the orthonormal transformation does induce
some dependence between coefficients that is not negligible asymptotically.

The above theorem states in particular that the asymptotic distribution is only the same
for both the original as well as synthesized time series in the i.i.d. case if either η = 3
as for example in the Gaussian case or the transformation is in some asymptotic sense
given by a permutation matrix. However, the latter can never happen for a wavelet
transform. This observation is summarized in the following corollary:

Corollary 2.4. Let d2(·, ·) denote the Mallows’ metric. Then, under the assumptions
of Theorem 2.3 (b) and for a wavelet transform, i.e. On = W n, based on a given filter
(or more generally if lim supn→∞ λOn < 1), then ETn(Y ) = ETn(X), but

d2
(√
n(Tn(Y )− ETn(Y )) ,

√
n(Tn(X)− ETn(X))

)
−→
n→∞

0 ⇔ η = 3.

While the above theorem and corollary do already show restrictions on how synthesized
(and in later chapters bootstrapped) time series can be used to obtain statistically valid
assertions in the non-Gaussian case, there may still be useful applications in particular
for Gaussian data. In particular, for frequency domain methods this has turned out to
be the case. A detailed discussion and comparison can be found in Section 2.4.1.

For this reason, we will now restrict our considerations to the Gaussian case and focus on
wavelet bases as in (2.12). While in this case the synthesized time series gives consistent
results for i.i.d. data this is no longer the case if dependence is present. More precisely,
we show that even the sample variance is not correctly mimicked if the dependence
between wavelet coefficients is not taken into account. In Theorem 2.5, we show that
this is already true for a 1-dependent time series despite its relatively mild dependency
structure. Similar arguments can be employed if stronger dependencies are present and
Theorem 2.7 addresses the case of a Gaussian AR(1) time series.

To make the above discussion more precise, we will compare the variances of Tn(X) and
Tn(Y ) for a Gaussian and 1-dependent time series in the following theorem. For the
variance of Tn(X), we get the exact representation

n var(Tn(X)) =

(
2− 2

n

)
γ2X(0) + αnγX(0)γX(1) + βnγ

2
X(1), (2.17)

9



2. The influence of dependence between wavelet coefficients

where αn → 0 and βn → 4 as n→∞; compare Theorem 2.1(iii).

Theorem 2.5 (1-dependent case). Suppose {Xt, t ∈ Z} is Gaussian and 1-dependent
with EXt = 0 and E |Xt|4 < ∞ and denote by {Yt} the corresponding synthesized time
series ignoring all dependence between coefficients as given in (2.15) and (2.16) using a
discrete wavelet transform based on the filter h0, . . . , hM−1.

(a) Then, ETn(Y ) = ETn(X), but there exists a constant βWn only depending on W n

such that

n var(Tn(Y )) =

(
2− 2

n

)
γ2X(0) + αnγX(0)γX(1) + βWnγ

2
X(1),

with βn − βWn ≥ (h0hM−1)
2 > 0 for all n ≥ 2M .

(b) If W n = W n,H is the Haar-wavelet transform, then βWn,H
→ 16/7.

The above theorem shows that ignoring the dependence between coefficients does not
lead to asymptotically consistent results for any fixed wavelet basis not even in the
Gaussian case, because the asymptotic variance of

√
nTn(X) requires a factor 4 in front

of γ2X(1) (compare with Theorem 2.1 (iii) and (2.17)). This is different from Fourier
analysis which consistently mimics the sample variance in the Gaussian SRD case if the
dependence (but not heteroscedasticity) between Fourier coefficients is ignored.

The given lower bound for the error in (a) is very conservative and one can expect the
true error to be much larger as can e.g. be seen for the Haar basis when comparing it
with the true (asymptotic) error.

The main consequence of the above theorem is summarized in the following corollary.

Corollary 2.6. Let the assumptions of Theorem 2.5 (a) hold and γX(1) 6= 0. Then,
ETn(Y ) = ETn(X), but

d2
(√
n(Tn(Y )− ETn(Y )) ,

√
n(Tn(X)− ETn(X))

)
6→

n→∞
0.

Remark 2.1. The assertions of the above theorem and the corollary remain true if we
synthesize a time series using independent wavelet coefficients of levels 1 to j (j > 1),
which are also independent of the remaining scaling coefficients, but mimic the joint
distribution of the scaling coefficients correctly. The reason is that the proof is merely
based on the finest level (k = 1).

The following theorem shows that similarly to the one-dependent case the asymptotic
variances of the sample variances differ for the synthesized and for the true time series in
the case of an autoregressive time series of order 1 even though the decorrelation property
of wavelets is more effective for AR(1) than for 1-dependent time series (cf. Percival et al.
(2000)).

Theorem 2.7 (AR(1) case). Suppose {Xt, t ∈ Z} is a causal Gaussian AR(1) time
series, i.e.

Xt = aXt−1 + et, et
i.i.d.∼ N(0, σ2), |a| < 1,

10



2. The influence of dependence between wavelet coefficients

and denote by {Yt} the corresponding synthesized time series ignoring all dependence
between coefficients as given in (2.15) and (2.16) using a discrete wavelet transform
based on the filter h0, . . . , hM−1. Then,

|n var(Tn(Y ))− n var(Tn(X))| 6→ 0

with the exception of at most finitely many a.

The findings of Theorems 2.5 and 2.7 and Corollary 2.6 are supported by the data
analysis in Aston et al. (2005). In this study, the variance of regression parameters
(in the wavelet domain) is estimated based both on this independence assumption as
well as using exact methods. Their Figure 1 indicates that the approximation assuming
independence is unsatisfactory for their fMRI data example.

In the context of parameter estimation for fractionally differenced processes, Craigmile
et al. (2005) propose to make use of the discrete wavelet transform to decorrelate the
data to be able to apply an approximate maximum likelihood approach. They argue that
dependence between levels can be handled by increasing the length M of the wavelet
filter, whereas the dependence within a level can be modeled by low-order autoregres-
sive processes. In that spirit, the following subsection addresses whether capturing the
dependence within levels while assuming independence between levels has the potential
of valid asymptotic results.

2.2. Ignoring only the dependence between coefficients of different levels

In this section, we investigate the influence of the dependence between levels if the
dependence of every level is mimicked correctly. More precisely, we consider

Ỹ = W TD
Ỹ
, (2.18)

D
Ỹ

= (d
Ỹ ,1

(1), . . . , d
Ỹ ,1

(n/2), d
Ỹ ,2

(1), . . . , d
Ỹ ,2

(n/4), . . . , d
Ỹ ,D

(1), v
Ỹ ,D

(1))T ,

where

(d
Ỹ ,k

(1), . . . , d
Ỹ ,k

(nk))
D
= (dX,k(1), . . . , dX,k(nk)), k = 1, . . . , D.

We will concentrate on the consideration of the Gaussian case for dependent data. Nev-
ertheless, it is worth pointing out that for X1, . . . , Xn being i.i.d. the corresponding
results of Theorem 2.3 remain true for the above synthesized time series for the Haar
basis. This is due to the fact that in this case the wavelet coefficients of each level are
truly independent by definition; compare (2.14). Consequently, in this special case, the
above distribution coincides with the one discussed in the previous section.

Theorem 2.8 (1-dependent case). Suppose {Xt, t ∈ Z} is Gaussian and 1-dependent
with EXt = 0 and E |Xt|4 < ∞ and denote by {Ỹt} the corresponding synthesized time
series ignoring the dependence between levels as given in (2.18) using a discrete wavelet
transform based on the filter h0, . . . , hM−1.

(a) Then, ETn(Ỹ ) = ETn(X), but there exists a constant β̃Wn only depending on W n

such that

n var(Tn(Ỹ )) =

(
2− 2

n

)
γ2X(0) + αnγX(0)γX(1) + β̃Wnγ

2
X(1),

11



2. The influence of dependence between wavelet coefficients

with βn − β̃Wn ≥ 1
4

(
(h

(2)
0 hM−1)

2 + (h0h
(2)
3M−3)

2
)
> 0 with h

(2)
0 , h

(2)
3M−3 as in (2.8)

for all n ≥ 4M .

(b) If W n = W n,H is the Haar-wavelet transform, then β̃Wn,H → 20/7.

The above theorem shows that ignoring only the dependence between levels still leads to
asymptotically inconsistent results for any fixed wavelet basis even in the Gaussian case
because the asymptotic variance of Tn(X) requires a factor 4 in front of γ2X(1) (compare
with Theorem 2.1).

In fact, we actually proved in Theorem 2.5 that for n > 2M

βn − βWn > βn − β̃Wn + (h0hM−1)
2.

Consequently, while taking the dependence within levels into account does not yield
consistent results, it does reduce the error. The given lower bounds are very conservative
and it is to be expected that the true error is much larger as can e.g. be seen when
comparing with the true error of the Haar basis.

Remark 2.2. For the Haar basis we can now compare the limiting variance in Theorem
2.1(iii) with the corresponding results in Theorem 2.5 and Theorem 2.8. This shows
that the factor of γ2X(1) indeed improves from 16/7 to 20/7 when the dependence within
levels is taken into account. However, there are still 8/7 lacking to the proper factor 4
which must consequently be coded in the dependence between levels. In particular, this
shows that not only is the dependence between levels not negligible, but its contribution
is even twice as large as the one within the levels. Some heuristic explanation for this
effect may be that there is dependence not only to one wavelet coefficient of the next
finer scale but to two (in the 1-dependent case - otherwise even more). This effect is in
contrast to popular believe which is based on the observation that the correlation decreases
exponentially between levels. This is because the latter effect is merely an artefact of the
factor leading to normalized hk,j.

The main consequence of the above theorem is summarized in the following corollary.

Corollary 2.9. Let the assumptions of Theorem 2.8 (a) hold and γX(1) 6= 0. Then,
ETn(Ỹ ) = ETn(X), but

d2

(√
n(Tn(Ỹ )− ETn(Ỹ )) ,

√
n(Tn(X)− ETn(X))

)
6→

n→∞
0.

Remark 2.3. The assertion of the above theorem as well as corollary remains true if we
synthesize a time series using independent wavelet coefficients of levels 1 to j (j > 2),
which are also independent of the remaining scaling coefficients, but mimic the joint
distribution of the scaling coefficients correctly. The reason is that the proof is merely
based on the two finest levels of wavelet coefficients.

Similarly to the one-dependent case, the following theorem shows that taking more de-
pendence (between wavelet coefficients within each level) into account still is insufficient
also for autoregressive time series of order 1.

12



2. The influence of dependence between wavelet coefficients

Theorem 2.10 (AR(1) case). Suppose {Xt, t ∈ Z} is a causal Gaussian AR(1) time
series, i.e.

Xt = aXt−1 + et, et
i.i.d.∼ N(0, σ2), |a| < 1,

and denote by {Ỹt} the corresponding synthesized time series ignoring the dependence
between levels as given in (2.18) using a discrete wavelet transform based on the filter
h0, . . . , hM−1. Then,∣∣∣n var(Tn(Ỹ ))− n var(Tn(X))

∣∣∣ 6→ 0

with the exception of at most finitely many a.

Remark 2.4. While the asymptotic variance of the sample variance for the synthesized
time series is asymptotically incorrect due to the lack of dependence between the wavelet
coefficients, the precise error depends on the wavelet transform used as well as the time
series structure of the data. Depending on the interplay between those two (in particular
if data driven methods are used to choose the wavelet transform) the model error (by
assuming independence) can become quite small, so that the performance of the procedure
in small samples may become better even than say a block bootstrap in the time domain,
which has no systematic error but may have a larger small sample error. Since our
results are based on the assumption that the same mother wavelet is used for each n, it
may even be possible to make the systematic error disappear asymptotically by choosing
different mother wavelets for each n adapted to the underlying time series structure in
such a way that the systematic error introduced by each of those ’bases’ becomes smaller
and smaller. This is in the same spirit as the combination of a wavelet transform with
decorrelation tests as suggested by Percival et al. (2000) in their wavestrap.

2.3. Sample autocovariance and sample autocorrelation

In this section, we address the asymptotic behavior of the sample autocovariance and
autocorrelation at lag one for synthesized time series Y and Ỹ as proposed in the
previous Sections 2.1 and 2.2. We define

γ̂Y (1) =
1

n

n−1∑
t=1

(Yt+1 − Ȳn)(Yt − Ȳn), and ρ̂Y (1) =
γ̂Y (1)

γ̂Y (0)
,

where γ̂Y (0) := Tn(Y ) and similarly γ̂
Ỹ

(1) and ρ̂
Ỹ

(1) as well as γ̂X(1) and ρ̂
X̃

(1) for
the original time series X. The following theorem proves a systematically erratic bias
for γ̂Y (1) and γ̂

Ỹ
(1).

Theorem 2.11 (γ̂Y (1) and γ̂
Ỹ

(1), 1-dependent case). Suppose {Xt, t ∈ Z} is Gaussian

and 1-dependent with EXt = 0, E |Xt|2 < ∞ and γX(1) 6= 0. Denote by {Yt} and {Ỹt}
the corresponding synthesized time series as given in (2.15) and (2.18), respectively,
using a discrete wavelet transform based on the filter h0, . . . , hM−1. βn is defined in
(2.17).

(a) With {Yt} and βWn as in Theorem 2.5, we have

13



2. The influence of dependence between wavelet coefficients

(i) |E γ̂X(1) − E γ̂Y (1)| = 1
4(βn − βWn)|γX(1)| ≥ 1

4(h0hM−1)
2|γX(1)| > 0 for all

n ≥ 2M .

(ii) If W n = W n,H , we have E γ̂Y (1)→ 4
7γX(1).

(b) With {Ỹt} and β̃Wn as in Theorem 2.8, we have

(i) |E γ̂X(1)−E γ̂
Ỹ

(1)| = 1
4(βn−β̃Wn)|γX(1)| ≥ 1

4

(
(h

(2)
0 hM−1)

2 + (h0h
(2)
3M−3)

2
)
|γX(1)| >

0 with h
(2)
0 , h

(2)
3M−3 as in (2.8) for all n ≥ 4M .

(ii) If W n = W n,H , we have E γ̂
Ỹ

(1)→ 5
7γX(1).

The subsequent corollary gives a similar result for ρ̂Y (1).

Corollary 2.12 (ρ̂Y (1) and ρ̂
Ŷ

(1), 1-dependent case). Under the corresponding as-
sumptions of Theorem 2.11, we have

(a) (i) |ρX(1)− ρ̂Y (1)| = 1
4(βn − βWn)|γX(1)|/γX(0) + oP (1).

(ii) If W n = W n,H , we have ρ̂Y (1)
P→ 4

7ρX(1).

(b) (i) |ρX(1)− ρ̂
Ỹ

(1)| = 1
4(βn − β̃Wn)|γX(1)|/γX(0) + oP (1).

(ii) If W n = W n,H , we have ρ̂Y (1)
P→ 5

7ρX(1).

The results of Theorem 2.11 and Corollary 2.12 indicate that the synthesized time series
Y and Ỹ do not carry enough (serial) dependence structure to mimic correctly the
means of sample autocovariances and autocorrelations. This is in contrast to the sample
variance, where its mean remains correct, but its variance is distorted.

2.4. Relation to classical time series results

The above results have several connections to the following three well-known results from
classical time series analysis:

2.4.1. Frequency domain decorrelation and bootstrap

First, wavelet analysis has strong connections to frequency domain inference, for which
the discrete Fourier coefficients are (in some sense) asymptotically independent and
normal. For a synthesized time series based on independent (and in the i.i.d. case
identically distributed) Fourier coefficients the same restrictions apply as in Theorem 2.3
or Corollary 2.4, because the term including η−3 of the variance vanishes asymptotically
for the bootstrap (cf. Dahlhaus and Janas (1996)). This issue has at least been partially
solved by the use of hybrid (i.e. time and frequency domain) bootstrap procedures
(cf. Kreiss and Paparoditis (2003), Jentsch and Kreiss (2010)). However, frequency
domain bootstrap methods have been successfully used in many applications such as the
estimation of spectral densities, spectral ratios (cf. Paparoditis (2002) for a review) or

14



2. The influence of dependence between wavelet coefficients

even time domain statistics such as change-point or unit-root tests (cf. Kirch and Politis
(2011)). Bootstrap consistency is achieved for Gaussian data (in which case η = 3 and
the corresponding term vanishes) as well as in the non-Gaussian case for statistics whose
asymptotic distributions depend only on the first and second order structure of the time
series.

In case of the frequency domain bootstrap the problem is that some of the dependency
information of the original time series is coded in the dependency between Fourier ordi-
nates more precisely in the fourth-order structure. As a result a bootstrap (or equiva-
lently synthesis) that assumes independence between Fourier coefficients only captures
the first and second-order structure of the time series correctly (as well as that part of
the fourth-order structure that is already explained by the second-order structure). This
explains why the method works quite generally for Gaussian data. For non-Gaussian
data, the covariance between periodogram ordinates (i.e. the fourth order moment struc-
ture of the original process) disappears asymptotically but only with rate 1/n, which
means that in some situations (such as the sample variance) those errors add up (as a
sum of n summands of order 1/n is no longer asymptotically negligible) while in others
(such as the autocorrelation) this effect does not cause a problem so that no Gaussian-
ity assumption needs to be made for the sample autocorrelation and frequency domain
methods.

In case of the wavelet bootstraps similar things happen in the non-Gaussian case as
pointed out by the factor λOn in Theorem 2.3 for i.i.d. data, which is smaller than 1
leading to an analogous systematic error as for frequency domain bootstrap methods
and the sample variance. In fact, as λOn can be close to 1 if bounded away from it
(depending on the choice of wavelet basis and the underlying time series structure),
this is an improvement over frequency domain bootstrap methods, where in the above
notation λOn = 0. This is no problem in the Gaussian case, where η − 3 = 0 and it
may be true that the term will also disappear in the wavelet domain for the sample
autocorrelations for linear processes (analogously to the frequency domain).

However, unlike in the frequency domain, even under Gaussianity assumption we get
an additional systematic error in the asymptotic variance of the sample variance that
relates to the second-order rather than the fourth-order dependence structure (see The-
orems 2.5 – 2.10). This error is due to the missing dependence between the wavelet
coefficient showing that this dependence is not asymptotically negligible in general. This
is fundamentally different from frequency domain bootstrapping.

While frequency domain methods are consistent for the sample autocorrelation for linear
processes even in the non-Gaussian case, wavelet based methods introduce a systematic
bias even for Gaussian data if dependence between or within the scales is ignored (see
Section 2.3). The same is true for the sample autocovariance where also a systematic
error is introduced. This is surprising and very different from frequency domain methods
as the error for the latter always relates to the asymptotic variance only.

2.4.2. Time domain decorrelation and bootstrap

The famous Wold theorem states that all reasonable stochastic time series can be written
as a weak linear process with uncorrelated noise. On the other hand for many statistical
results (such as the linear process bootstrap; cf. Jentsch and Politis (2013) and Jentsch
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3. Bootstrap in the wavelet domain

and Politis (2015)) the assumption of independence (i.e. strict white noise) is needed,
which is far more restrictive. However, for Gaussian data as well as several statistics of
interest the asymptotics of the weak and strict linear process coincide.

Thirdly, many processes can be well approximated by an AR(∞) process (cf. Theorem
4.4.3 in Brockwell and Davis (1991)). This approximation has been exploited by the
AR-sieve-bootstrap, where Kreiss et al. (2011) investigate bootstrap consistency for a
large class of statistics for which the bootstrap turns out to be consistent if and only if
the asymptotic distribution of the corresponding statistics only depends on the first and
second order structure of the underlying time series. In particular, this implies bootstrap
consistency in the Gaussian case.

In view of these classic results, it is very surprising that the approximation via inde-
pendent wavelet coefficients (or only between-scale independence) does not even yield
consistent results in the Gaussian case.

2.4.3. Locally stationary wavelet models

Nason et al. (2000) introduce and investigate locally stationary wavelet models, where a
nondecimated wavelet transform is used and the corresponding coefficients are assumed
to be uncorrelated. Their Proposition 3 proves that all SRD time series are contained
in this model class. Some statistical theory for this class is provided in Fryzlewicz
and Nason (2006). Applications range from forecasting in Fryzlewicz et al. (2003), via
classification in Fryzlewicz and Ombao (2009) to change point detection in Cho and
Fryzlewicz (2012, 2014), Killick et al. (2013) and Nam et al. (2014). For most of the
theoretic statistical analysis, however, the stronger assumption of independence (and
often even Gaussianity) of the increment process is necessary. In light of the above
discussion it may be well worth investigating how strong this assumption truly is and
what time domain representations of time series are consistent with it.

3. Bootstrap in the wavelet domain

In this section, we focus on the sample variance and look at the validity of nonparametric
bootstrap methods for the wavelet coefficients if more and more dependence is taken into
account. In contrast to most of the results of the previous section, the results are not
restricted to the 1-dependent case and allow in particular for LRD time series.

3.1. Levelwise i.i.d. bootstrap

In this subsection, we investigate the validity of Efron’s standard i.i.d. bootstrap applied
independently to each level, i.e. {d∗k(l) : k, l} are i.i.d. with d∗k(l) uniformly distributed

on the set {dk(1), . . . , dk(nk)} (independent of {Xt}). This is equivalent to d∗k(l) ∼ F̂k
with F̂k(x) := 1

nk

∑nk
l=1 1{dX,k(l)6x}.

X∗W = W TD∗X , (3.1)

D∗X = (d∗1(1), . . . , d∗1(n1), d
∗
2(1), . . . , d∗2(n2), . . . , d

∗
D(1), vX,D(1))

T .
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3. Bootstrap in the wavelet domain

For the statistic Tn(X) the choice of the scaling coefficient is arbitrary. However, for
other statistics it may be important that it correctly mimics the asymptotic behavior
of the sample mean, which does require additional resampling such as moving blocks
resampling in the time domain or subsampling.

This bootstrap method asymptotically mimics the distribution of Y = W TDY with
DY as in (2.16), which is related to the concept of a companion process as defined
in Kreiss et al. (2011). Consequently, we get the same restriction that we get for the
synthesized time series Y .

Theorem 3.1. Define X∗W as in (3.1) and Y as in (2.15) and (2.16).

(a) Let {Xt, t ∈ Z} be i.i.d. Then, it holds E∗(Tn(X∗W )) = Tn(X) and

E (n var∗(Tn(X∗W ))) = n var(Tn(Y )) + o(1)

(b) Let {Xt, t ∈ Z} be Gaussian and γX(r) = O(|r|2d−1) as |r| → ∞ with 0 6 d < 1/4.
Then, it holds E∗(Tn(X∗W )) = Tn(X) and

E (n var∗(Tn(X∗W ))) = n var(Tn(Y )) + o(1) if 0 6 d < 1/4

as well as

E

(
n

log n
var∗(Tn(X∗W ))

)
=

n

log n
var(Tn(Y )) + o(1) if d = 1/4.

The first part of the above theorem in combination with Theorem 2.3 shows that even
for i.i.d. data such a bootstrap will fail except for η = 3 (as for Gaussian data). An anal-
ogous assertion also holds if one applies Efron’s i.i.d. bootstrap after any orthonormal
transformation On that is not a permutation matrix. In the latter case, the bootstrap
is simply equivalent to Efron’s i.i.d. bootstrap of the original data and as such asymp-
totically valid for i.i.d. data. While assertion (a) is purely academic, after all why would
one want to apply such a complicated bootstrap for a simple i.i.d. data set, we see in (b)
that this bootstrap will not be valid in general for the dependent Gaussian case, because
Theorem 2.5 shows that the missing dependency between coefficients is not asymptot-
ically negligible in general. For d > 1/4 the proof of Theorem 3.1 does not work and,
moreover, Theorem 4.1 below shows that the above bootstrap does not yield consistent
results in this case. Since the asymptotic variance of Y differs in general from that of
X by Theorem 2.3, the bootstrap variance will typically differ from the true variance of
our statistic. These findings are supported by several simulation studies conducted in
Percival et al. (2000), Breakspear et al. (2003) and in particular by Tang et al. (2008),
who find wavestrap procedures based on nonparametric resampling methods unreliable.

3.2. Levelwise block bootstrap

A non-parametric bootstrap alternative which takes some of the dependency into account
is a levelwise (non-overlapping) block bootstrap. To investigate this approach, define
the block length for level k by Lk = 2bk 6 nk = n/2k for some suitable integer-valued,
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non-negative bk = bk(n) and draw Nk = nk/Lk = 2D−k−bk > 1 independent blocks of
length Lk uniformly (with replacement) from

{dk(1), . . . , dk(Lk)}, {dk(Lk + 1), . . . , dk(2Lk)}, . . . , {dk (nk − Lk + 1) , . . . , dk (nk)}.

The kth level of bootstrap coefficients is then given by

d̃∗k(1), . . . , d̃∗k(Lk), d̃∗k(Lk + 1), . . . , d̃∗k(2Lk), . . . , d̃∗k (nk − Lk + 1) , . . . , d̃∗k (nk) .

This is done independently for each level k and independent of {Xt} leading to the
bootstrap time series

X̃
∗
W = W T D̃

∗
X , (3.2)

D̃
∗
X = (d̃∗1(1), . . . , d̃∗1(n1), d̃

∗
2(1), . . . , d̃∗2(n2), . . . , d̃

∗
D(1), vX,D(1))T .

This bootstrap method asymptotically mimics the distribution of Ỹ = W T D̃Y as in
(2.18). In order to simplify the conditions on the levelwise bandwidth bk we assume the
existence of a sequence A(n)→∞ such that as n→∞

inf
k6A(n)

bk →∞, sup
k6A(n)

2bk+k/n→ 0. (3.3)

The first condition says that the bandwidth converges to infinity in some uniform sense,
where one cannot expect it to hold uniformly over all levels because the number of
coefficients nk = n/2k belonging to the coarser scales (k close to D) does not increase
asymptotically. The second condition corresponds to the second standard condition of
block bootstrapping: Lk/nk → 0.

A possible choice that is (in some sense) uniform in all levels is given by bk = max(b−
k + 1, 0) with b = b(n) → ∞ and 2b/n → 0. This choice will play an important role in
the next section. In particular, it fulfills the above assumptions (3.3) with A(n) =

√
b.

While this improves the approximation in comparison to the full i.i.d. bootstrap of the
previous section, the bootstrap is not asymptotically valid in general due to too much
dependence between levels that is not taken into account. In fact, instead of correctly
mimicking the asymptotic variance of the process {Xt} the bootstrap mimics the process
{Ỹt}.

Theorem 3.2. Let {Xt, t ∈ Z} be Gaussian and γX(r) = O(|r|2d−1) as |r| → ∞
with 0 6 d < 1/4 and define X̃

∗
W as in (3.2) and Ỹ as in (2.18). For block-lengths

fulfilling (3.3), it holds E∗(Tn(X∗W )) = Tn(X) and

E (n var∗(Tn(X∗W ))) = n var
(
Tn(Ỹ )

)
+ o(1).

For d = 1/4 a similar assertion as in Theorem 3.1 can be shown under stronger assump-
tions on the bandwidth, but for d > 1/4 the below proof does not work and Theorem 4.1
shows that the above bootstrap does not yield consistent results in this case.
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Remark 3.1. The proof of the theorem remains true for non-Gaussian time series as
long as the rates for the covariances of the wavelet coefficients as in Lemma B.1 for
k1 = k2 remain valid. This is in particular the case for all m-dependent time series (m
arbitrary but fixed).

Despite the fact that the correlation within levels is now captured correctly by the
bootstrap, Theorem 3.2 shows that the asymptotic bootstrap variance will in general
differ from the true variance of the statistic. These theoretical findings are supported in
parts by the simulations conducted in Sabatini (1999).

3.3. Quadrature Block Bootstrap

The bootstrap procedures in the above two sections fail because they are not able to
fully capture the dependence between wavelet coefficients. The question arises whether
it is possible to define a block bootstrap which can capture this dependence, where the
main problem is the triangular lattice structure of the wavelet coefficients. Additionally,
we would like the bootstrap coefficients in each level to be obtained from the set of
coefficients of that same level rather than to exchange coefficients between levels. This
is particularly important with a possible application to LRD data in mind. In this case,
the coefficients are heteroscedastic (between levels) where for an appropriate rescaling
the long-memory parameter needs to be known or estimated, something that Percival
et al. (2000) explicitly try to avoid by proposing wavestrapping.

To this end, we propose the following bootstrap: First, extend the triangular lattice
{dX,k(l), k = 1, . . . , D, l = 1, . . . , n/2k} to a rectangular lattice Q = {qX,k(l) : k =
1, . . . , D, l = 1, . . . , n/2} by duplicating the observed values as shown in Figure 3.1: For
level k = 2 we write down every coefficient twice, for level k = 3 we write it down four
times until finally for level k = D the single coefficient is repeated n/2 times, that is, we
write down the coefficients 2k−1 times for level k. Mathematically, this means

qX,k(l) = dX,k

(⌈
l

2k−1

⌉)
,

where dxe denotes the smallest integer greater or equal to x. The triangular lattice can
be obtained from this rectangular lattice by the relation dX,k(l) = qX,k(2

k−1l).

The rectangular lattice can now be block bootstrapped in the following way: Cut Q
into vertical (through all levels k = 1, . . . , D) stripes of horizontal block length L = 2b

for some suitable integer-valued, non-negative b = b(n). Thus, we obtain N = n
2L such

blocks. Now, draw randomly from these blocks (with replacement, independent of {Xt})
and put them back together to get q∗k(l), k = 1, . . . , D, l = 1, . . . , n/2. The bootstrap
wavelet coefficients are obtained as ď∗k(l) = q∗k(2

k−1l). We consider this non-overlapping
block bootstrap for simplicity only. Alternatively, an overlapping version can be used
which is theoretically more difficult to analyze.

Observe that the effective block length in each level is given by max(2b−k+1, 1). In
particular, as soon as k > b+ 1, i.e. for the coarsest scales, this reduces to Efron’s i.i.d.
bootstrap as described in Section 3.1. However, the impact of those coarsest scales is
negligible in the SRD case or for long-memory time series with d < 1/4, but will cause
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d4(1)

d3(1) d3(2)

d2(1) d2(2) d2(3) d2(4)

d1(1) d1(2) d1(3) d1(4) d1(5) d1(6) d1(7) d1(8)

d4(1) d4(1) d4(1) d4(1) d4(1) d4(1) d4(1) d4(1)

d3(1) d3(1) d3(1) d3(1) d3(2) d3(2) d3(2) d3(2)

d2(1) d2(1) d2(2) d2(2) d2(3) d2(3) d2(4) d2(4)

d1(1) d1(2) d1(3) d1(4) d1(5) d1(6) d1(7) d1(8)

Figure 3.1: Schematic representation of the transformation from a triangular (left) to a
rectangular (right) lattice for n = 16

problems for LRD time series with d > 1/4. This is discussed in more detail in Section 4
below.

The bootstrap time series is given by

X̌
∗
W = W T Ď

∗
X , (3.4)

Ď
∗
X = (ď∗1(1), . . . , ď∗1(n/2), ď∗2(1), . . . , ď∗2(n/4), . . . , ď∗D(1), vX,D(1))T .

This is essentially the same idea as has been proposed by Wendt et al. (2009) for
bootstrapping wavelet leaders of 2D images.

The quadratic scheme above is only an artificial construction to solve the problem of
constructing a two-dimensional block bootstrap for the triangular wavelet scheme and
should not be confused with the quadratic scheme arising from the use of non-decimated
wavelet transforms. For the latter the independence assumption between wavelet coef-
ficients is not even approximately fulfilled for i.i.d. data in the time domain so that the
full dependency needs to be captured by any bootstrap method. While a 2-dimensional
block bootstrap can be applied quite naturally in this situation, it is unclear how to
backtransform the data to the time domain in order to get an approximation of the
statistic of interest (or equivalently, rewrite the time domain statistic in terms of the
non-decimated wavelet coefficients).

The following theorem shows, that the above bootstrap is in fact capable of correctly
capturing the asymptotic variance of SRD as well as LRD (with d < 1/4) Gaussian
time series of the sample variance in expectation. We believe that these additional
assumptions on the basis can be relaxed under stronger assumptions on the rate of
decay for the autocovariance function. For example no restrictions apply in the MA(1)
case.

Furthermore we conjecture that asymptotic normality could be proved implying asymp-
totic validity of this bootstrap scheme for a large class of time series. However, a stan-
dard block bootstrap in the time domain also yields valid results with good small sample
properties for d < 1/4, so that this complicated bootstrap does seem to be a bit of an
overkill. The next section will show that neither this bootstrap nor most other bootstrap
methods will be able to correctly mimic the asymptotic behavior for d > 1/4.

Theorem 3.3. Let {Xt, t ∈ Z} be Gaussian and define X̌
∗
W as in (3.4). Let γX(r) =

O(|r|2d−1), 0 6 d < 1/4, as |r| → ∞ and the basis fulfills for all k1 6 k2 and all r ∈ Z
that

Mk1
−1∑

s=0

(h
(k2)
s−r )

2 = O(2k1−k2), (3.5)
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3. Bootstrap in the wavelet domain

which is in particular fulfilled for the Haar basis. Then, E∗(Tn(X∗W )) = Tn(X) and

E
(
n var∗(Tn(X̌

∗
W ))

)
= n var (Tn(X)) + o(1),

if L log n/n→ 0 as well as L4d−2 n log n→ 0.

Remark 3.2. The assertion remains true for a non-Gaussian time series as long as the
rates of decay for the covariances of the wavelet coefficients as proven in Lemma B.1
for the Gaussian case remain true. This is in particular correct for the m-dependent
case (m arbitrary but fixed). In particular, this shows that this complicated bootstrap
scheme is able to correctly mimic the asymptotic behavior for an i.i.d. sequence with
η 6= 3, which is neither possible via the i.i.d. wavelet bootstrap from Section 2.1 even if
the time series is i.i.d. nor via standard frequency domain bootstrap methods (but can
easily be achieved by Efrons bootstrap in the time domain for i.i.d. data).

3.4. Simulations

In this section, we aim to illustrate the theoretical properties of synthesis and bootstrap
procedures discussed in this paper. More precisely, we apply the DWT-Bootstrap vari-
ants of a levelwise iid bootstrap (DWTiid), a levelwise block bootstrap (DWTblock) and
a quadrature block bootstrap (DWTquad) as proposed in Sections 3.1 - 3.3 and a time-
domain moving block bootstrap (MBB) to simulated data. We consider the statistics of
the sample variance, sample autocovariance at lag 1 and the sample autocorrelation at
lag 1 based on two short-range dependent (SRD) and two long-range dependent (LRD)
time series models

(I) MA(1) Xt = 0.9et−1 + et,

(II) AR(1) Xt = 0.9Xt−1 + et,

(III) FARIMA(1, d = 0.2, 0) with a = 0.9,

(IV) FARIMA(1, d = 0.45, 0) with a = 0.9,

where we have used standard Gaussian white noise et ∼ (0, 1) in all cases. We choose
SRD Gaussian MA(1) and AR(1) models to illustrate our findings concerning erroneous
variances and means for sample autocovariances and autocorrelations in Section 2 for
the synthesis and in Sections 3.1 - 3.3 for the corresponding bootstraps. The two LRD
FARIMA models cover the cases of an LRD process with moderate (0 < d < 1/4) long
memory and with strong (1/4 < d < 1/2) long memory. This refers to the results
established in Section 4 below, where the general inability of DWT-based bootstrap for
time series with a strong long range dependence is discussed.

In general, we aim to illustrate distortions for DWTiid and DWTblock for fixed wavelet
bases, but also we want to indicate the potential of DWTquad to lead to correct approx-
imations. To compute the DWT for all bootstraps, we used the R command wd(x,...)
with (optional) parameters family.number ∈ {1, 2, 4} (e.g. 1 refers to Haar wavelets)
and family = ”DaubExPhase”, in order to study the effect of different wavelet bases
used for the DWT to decorrelate the data. To check whether a higher degree of decor-
relation might lead to valid results and whether this might outperform well-established
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time-domain approaches, we compare our results to MBB, compare also the discussion
in Remark 2.4.

For estimating the sample variance in Figure 3.2 and the sample mean in Figure 3.3 in
all bootstrap procedures, we have generated M = 500 time series of models (I) - (IV)
of sample size n = 212 and B = 500 bootstrap replications have been used in each step.
To estimate the true target values that are indicated by red lines in Figures 3.2 and
3.3, we have used 20 000 simulations. For the time-domain MBB, we have used the R
routine b.star() to estimate the block length. For the wavelet-domain level-wise block
bootstrap, we have used the block lengths 2b+1−k with b = round(D3/4) for level k and for
the quadrature block-bootstrap, we have used the block length 2b with b = round(D3/4).
This choice matches the requirements of Section 3.

Figure 3.2 clearly indicates the distortion for the bootstrap variance estimates based on
DWTiid and DWTblock. In contrast, DWTquad tends to be clearly superior to the
other two wavelet bootstraps for all models under consideration. This is not only true
for SRD, but also for LRD time series. However, DWTquad tends to be comparable to
the much simpler time-domain MBB with respect to the bias of the estimates only. With
respect to the variance of the estimates, MBB clearly outperforms DWTquad. The bad
performance of the MBB for sample autocorrelations in the MA model is caused by the
use of b.star(), which is tailor-made for choosing the block length for the sample mean. In
further simulations (not reported in the paper), we found that this rule picks far too small
block lengths for sample autocorrelations. A closer inspection of the results for wavelet
based bootstrap methods shows that the performance improves if other (obviously more
decorrelating) wavelet bases are used. This can be seen particularly for the sample
autocorrelations, where the performance for DWTiid and for DWTblock significantly
improves. For both LRD time series with moderate and strong long memory, all four
bootstrap types are inconsistent for the sample variance and the sample autocovariance.
For the sample autocorrelation, the picture becomes somewhat different, but zooming-in
shows a distortion here as well.

Supporting the theory in Section 3 the left column of Figure 3.3 shows that the bootstrap
means for all bootstrap methods under consideration are not distorted for the statistic of
the sample variance. In contrast and as discussed in Section 2.3, the picture is different
for the sample autocovariance and sample autocorrelation at lag 1. In particular, DWT-
based bootstrap sample autocovariances and autocorrelations tend to systematically
underestimate the true ones. Similar to the observations made above in Figure 3.2, this
effect tends to vanish by using more suitable wavelet bases and by using more refined
DWT bootstraps, i.e. by moving from DWTiid to DWTblock or DWTquad. The time-
domain MBB also tends to underestimate the true values particularly for LRD time
series, but only slightly (and not systematically) for SRD time series. The latter effect
can again be explained by the use of b.star() picking a too small block length. The
behavior for sample autocovariances and autocorrelations at higher lags is similar in
having a systematic downward distortion (the exact results are not reported here).
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3. Bootstrap in the wavelet domain

Figure 3.2: Boxplots of bootstrap variance estimates based on DWTiid, DWTblock, DWTquad

and MBB for the sample variance (left column), sample autocovariance at lag 1

(center column) and sample autocorrelation at lag 1 (right column). For each

DWT-type bootstrap, the three boxes correspond to different wavelet bases with

family.number ∈ {1, 2, 4} (from left to right). The results are shown for generated

data of sample size n = 212 for models (I) - (IV) (from top to bottom). The targets

of the true variances are marked with red horizontal lines.
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Figure 3.3: Boxplots of bootstrap mean estimates based on DWTiid, DWTblock, DWTquad

and MBB for the sample variance (left column), sample autocovariance at lag 1

(center column) and sample autocorrelation at lag 1 (right column). For each

DWT-type bootstrap, the three boxes correspond to different wavelet bases with

family.number ∈ {1, 2, 4} (from left to right). The results are shown for generated

data of sample size n = 212 for models (I) - (IV) (from top to bottom). The targets

of the true means are marked with red horizontal lines.
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4. Asymptotic impact of the wavelet smooth under long range dependence

4. Asymptotic impact of the wavelet smooth under long range
dependence

The bootstrap procedures considered in the previous section have one thing in common:
None of them is capable to correctly mimic the distribution of the wavelet coefficients
in the coarsest levels (k = D, . . . ,D − J). This is not an artificial property of these
particular bootstrap methods but inherent to all bootstrap methods which try to mimic
distributional properties of the wavelet coefficients of each level based only on that same
information. The reason is that for k = D, . . . ,D−J , J fixed, the number of coefficients
from which to draw information is only finite (even as n → ∞). It could possibly be
solved by taking more information into account, where one possibility is subsampling (in
the wavelet domain), which in the context of wavelet coefficients reduces to resampling
from a finer level and then use a rescaling step (involving the long-memory parameter
d) to put the statistics on the same ’footing’. Using scaling coefficients rather than
wavelet coefficients for the coarser scales does not change the problem as can be seen by
Theorem 4.1.

In the context of SRD random variables as well as LRD random variables with d < 1
4 as

above, this inability to correctly mimic the coarser scale coefficients did not cause the
bootstrap to fail, because the asymptotic influence of those coefficients turns out to be
negligible in Theorem 4.1 below.

For LRD data {Xt} with long-memory parameter 0 < d < 1/2, the variance of the kth
level coefficients is usually of order 22kd. For Haar wavelets this can easily be seen by
the fact that

var

(
m∑
t=1

Xt

)
∼ m

∑
|h|<m

γX(h) ∼ m1+2d

and the formula for the Haar wavelet coefficients as in (2.14) and is already stated in
(1.9) in Kaplan and Kuo (1993).

The following theorem states that the information in the coarser scale coefficients is
only asymptotically negligible if d 6 1/4. In fact, for d > 1/4 even the single coefficient
of the coarsest level (i.e. k = D) has an influence on the asymptotic distribution. In
this situation the long-range dependence is strong enough to change the asymptotic
behavior as can be seen by the different (in comparison to d 6 1/4) limit distributions
in Theorem 2.2. The influence of the coarse scale information can then be explained by
the fact that this information essentially corresponds to the long-range information.

As a consequence, any bootstrap procedure which cannot correctly mimic the distri-
bution of every single wavelet (or scaling) coefficient will fail in general. As already
mentioned, one possible way out is to use subsampling for coarser levels. However, to do
so we need to know the long-memory parameter d in order to do the proper upscaling.
Furthermore, if one does know this parameter (or has a reasonably good estimator) it is
much simpler and seems much more efficient to use subsampling on the actual statistic
of interest in the time domain; compare Chapter 10 in Lahiri (2003).

Theorem 4.1. Denote by

Tn,J(X) =
1

n

D−J∑
k=1

nk∑
l=1

d2k(l)
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the part of statistic Tn(X) based only on the wavelet rough up to level D − J . Assume
that there exists 0 < cd < Cd <∞ such that

cd 22kd 6 var dk(·) 6 Cd 22kd.

Then, it holds for a(n, d) as in Theorem 2.2:

a) For d 6 1/4, then

E a(n, d) |Tn(X)− Tn,J(X)| → 0

if J = J(n)→∞ sufficiently slow.

b) For d > 1/4, then

E a(n, d) |Tn(X)− Tn,1(X)| = E
a(n, d)

n
d2D(1) > cd > 0.

While the quadrature block bootstrap as in Section 3.3 has a chance of being valid as
long as d < 1/4 with a question mark for d = 1/4, analogous results to Theorem 3.3 can
be obtained for the much simpler block bootstrap in the time domain for d < 1/4. This
time domain block bootstrap seems to be preferable to the complicated wavelet based
method if only for its simplicity. Kim and Nordman (2011) as well as Lahiri (1993)
investigate the validity of the time domain block bootstrap for the sample mean in the
presence of LRD.

5. Conclusions

In this paper, we have investigated how much information the dependence between
wavelet coefficients carries. It turns out that for the sample variance this dependence is
not negligible in general as ignoring it leads to distortions of its limiting variance. More-
over, for sample autocovariances and autocorrelations, we found that already the mean
is distorted by ignoring this dependence, which is in contrast to the sample variance,
where its mean remains unaffected. Contrary to frequency domain or linear process ap-
proximations which yield asymptotically correct results at least for Gaussian time series,
this wavelet domain approach turns out to be invalid even for normal data. This is not
only true for the dependence between wavelet coefficients of the same level but also for
the dependence between wavelet coefficients of different scales. The example of a Haar
basis even suggests that the dependence of different levels may contribute more than
the dependence within levels. As a consequence, bootstrap methods which are unable
to correctly mimic all of the dependency structure in the wavelet domain, will be incon-
sistent. Similarly statistical inference drawn under this assumption will likely contain
some model error that is not asymptotically negligible. These theoretical findings are
supported by the data analysis in Aston et al. (2005) as well as the simulations in Tang
et al. (2008) among others.

While our focus was mainly on the sample variance as a statistic, we indicated also dis-
tortions for sample autocovariances and autocorrelations. Consequently, these negative
results urge to be extremely careful for other statistics as well. Furthermore, while we
only considered the synthesis of time series in addition to bootstrap procedures based
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on a simplified dependency structure in the wavelet domain, related procedures such as
Bayesian inference based on an approximated likelihood (under independence assump-
tions of the coefficients) should also be handled with care.

Additionally, for LRD time series with long-memory parameter d > 1/4, the asymp-
totic distributional properties of the sample variance depend on the wavelet smooth (or
equivalently final scaling coefficients). Because there exist only finitely many of those
coefficients (even asymptotically), their distribution cannot be mimicked correctly by
standard resampling methods without using additional information about the structure
of the time series. Similarly, in the Bayesian analysis the effective sample size for those
coefficients is very small, so that the information carried by them will depend mainly
on the prior. For these reasons an extra error in the inference for LRD data using those
methods cannot be avoided.
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G. Faÿ, E. Moulines, F. Roueff, and M. S. Taqqu. Estimators of long-memory: Fourier versus
wavelets. Journal of Econometrics, 151(2):159–177, 2009.

H. Feng, T. R. Willemain, and N. Shang. Wavelet-based bootstrap for time series analysis.
Communications in Statistics – Simulation and Computation, 34(2):393–413, 2005.

P Flandrin. Wavelet analysis and synthesis of fractional brownian motion. IEEE Transactions
on Information Theory, 38(2):910–917, 1992.

P. Fryzlewicz and G. Nason. Haar-fisz estimation of evolutionary wavelet spectra. Journal of the
Royal Statistical Society, Series B, 68:611–634, 2006.

P. Fryzlewicz and H. Ombao. Consistent classification of nonstationary time series using non-
stationary time series by wavelet process modelling. Journal of the American Statistical As-
sociation, 104:299–312, 2009.

P. Fryzlewicz, S. Van Bellegem, and R. von Sachs. Forecasting non-stationary time series by
wavelet process modelling. Annals of the Institute of Statistical Mathematics, 55:737–764,
2003.

J.R.M. Hosking. Asymptotic distributions of the sample mean, autocovariances, and autocorre-
lations of long memory time series. Journal of Econometrics, 73:261–284, 1996.

M. J. Jensen. An alternative maximum likelihood estimator of long-memory processes using
compactly supported wavelets. Journal of Economic Dynamics and Control, 24(3):361–387,
2000.

C. Jentsch and J.-P. Kreiss. The multiple hybrid bootstrap - resampling multivariate linear
processes. Journal of Multivariate Analysis, 10:2320–2345, 2010.

C. Jentsch and D. N. Politis. Valid resampling of higher order statistics using linear process
bootstrap and autoregressive sieve bootstrap. Communications in Statistics - Theory and
Methods, 42(7):1277–1293, 2013.

28



References

C. Jentsch and D. N. Politis. Covariance matrix estimation and linear process bootstrap for
multivariate time series of possibly increasing dimension. The Annals of Statistics, 43(3):
1117–1140, 2015.

J. Jeong, M. Vannucci, and K. Ko. A wavelet-based bayesian approach to regression models with
long memory errors and its application to fmri data. Biometrics, 69(1):184–196, 2013.

L. M. Kaplan and C.-C.J. Kuo. Fractal estimation from noisy data via discrete fractional gaussian
noise (dfgn) and the haar basis. Signal Processing, IEEE Transactions on, 41(12):3554–3562,
1993.

R. Killick, I. A. Eckley, and P. Jonathan. A wavelet-based approach for detecting changes in
second order structure within nonstationary time series. Electronic Journal of Statistics, 7:
1167–1183, 2013.

Y.-M. Kim and D.J. Nordman. Properties of a block bootstrap method under long range depen-
dence. Sankhya Series A, 73:79–109, 2011.

C. Kirch and D. N. Politis. TFT-bootstrap: Resampling time series in the frequency domain to
obtain replicates in the time domain. The Annals of Statistics, 39(3):1427–1470, 2011.

K. Ko and M. Vannucci. Bayesian wavelet analysis of autoregressive fractionally integrated
moving-average processes. Journal of Statistical Planning and Inference, 136(10):3415–3434,
2006.

J.-P. Kreiss and S.N. Lahiri. Bootstrap methods for time series. In: Handbook of Statistics, Vol
30: Time Series-Methods and Applications, 30:3–26, 2012.

J.-P. Kreiss and E. Paparoditis. Autoregressive-aided periodogram bootstrap for time series. The
Annals of Statistics, 31(6):1923–1955, 2003.

J.-P. Kreiss and E. Paparoditis. Bootstrap for dependent data: a review. Journal of the Korean
Statistical Society, 40:357–378, 2011.

J.-P. Kreiss, E. Paparoditis, and D. N. Politis. On the range of validity of the autoregressive
sieve bootstrap. The Annals of Statistics, 39(4):2103–2130, 2011.

S. N. Lahiri. On the moving block bootstrap under long range dependence. Statistics and
Probability letters, 18:405–413, 1993.

S.N. Lahiri. Resampling methods for dependent data. Springer, 2003.

J. Liu and P. Moulin. Analysis of interscale and intrascale dependencies between image wavelet
coefficients. in Proc. Int. Conf. Image Processing (ICIP), Vancouver, BC, Canada., 2000.

E. J. McCoy and A. T. Walden. Wavelet analysis and synthesis of stationary long-memory
processes. Journal of Computational and Graphical Statistics, 5(1):26–56, 1996.

J. Mielniczuk and P. Wojdyllo. Decorrelation of wavelet coefficients for long-range dependent
processes. IEEE Transactions on Information Theory, 53(5):1879–1883, 2007.

E. Moulines, F. Roueff, and M. S. Taqqu. On the spectral density of the wavelet coefficients
of long-memory time series with application to the log-regression estimation of the memory
parameter. Journal of Time Series Analysis, 28(2):155–187, 2007a.

E. Moulines, Ff Roueff, and M. S. Taqqu. Central limit theorem for the log-regression wavelet
estimation of the memory parameter in the gaussian semi-parametric context. Fractals, 15
(04):301–313, 2007b.

E. Moulines, F. Roueff, and M. S. Taqqu. A wavelet Whittle estimator of the memory parameter
of a nonstationary Gaussian time series. The Annals of Statistics, pages 1925–1956, 2008.

29



References

C. F. H. Nam, J. A. D. Aston, I. A. Eckley, and R. Killick. The uncertainty of storm season
changes: Quantifying the uncertainty of autocovariance changepoints. Technometrics, 2014.

G. Nason. Wavelet methods in statistics with R. Springer, 2010.

G. P. Nason, R. von Sachs, and G. Kroisandt. Wavelet processes and adaptive estimation of the
evolutionary wavelet spectrum. Journal of the Royal Statistical Society, Series B, 62:271–292,
2000.

E. Paparoditis. Frequency domain bootstrap for time series. In: H. Dehling, T. Mikosch, M.
Sorensen (Eds.), Empirical Process Techniques for Dependent Data, Birkhäuser, pages 365–
381, 2002.

D. B. Percival and D. Mondal. A wavelet variance primer. In: Handbook of Statistics, Vol 30:
Time Series-Methods and Applications, 30:623–657, 2012.

D. B. Percival and A. T. Walden. Wavelet Methods for Time Series Analysis (Cambridge Series
in Statistical and Probabilistic Mathematics). Cambridge University Press, 2000.

D. B. Percival, S. Sardy, and A. C. Davison. Wavestrapping time series: Adaptive wavelet-based
bootstrapping. Nonlinear and Nonstationary Signal Processing, pages 442–471, 2000.

A. M. Sabatini. Wavelet-based estimation of 1/f -type signal parameters: Confidence intervals
using the bootstrap. Signal Processing, IEEE Transactions on, 47(12):3406–3409, 1999.

L. Tang, W. A. Woodward, and W. R. Schucany. Undercoverage of wavelet-based resampling
confidence intervals. Communications in Statistics - Simulation and Computation, 37(7):1307–
1315, 2008.

A. H. Tewfik and M. Kim. Correlation structure of the discrete wavelet coefficients of fractional
brownian motion. IEEE Transactions on Information Theory, 38(2):904–909, 1992.

B. Vidakovic. Statistical modeling by wavelets, volume 503. John Wiley & Sons, 2009.

G. G. Walter. Wavelets and other orthogonal systems with applications. CRC Press, 1994.

H. Wendt and P. Abry. Multifractality tests using bootstrapped wavelet leaders. IEEE Trans-
actions on Signal Processing, 55(10):4811–4820, 2007.

H. Wendt, P. Abry, and S. Jaffard. Bootstrap for empirical multifractal analysis. IEEE Signal
Processing Magazine, 24(4):38–48, 2007.

H. Wendt, S. G. Roux, S. Jaffard, and P. Abry. Wavelet leaders and bootstrap for multifractal
analysis of images. Signal Processing, 89:1100–1114, 2009.

B. Whitcher. Wavelet-based bootstrapping of spatial patterns on a finite lattice. Computational
Statistics & Data Analysis, 50(9):2399–2421, 2006.

P. Whittle. Curve and periodogram smoothing. Journal of the American Statistical Association,
75:122–132, 1957.

G. W. Wornell and A. V. Oppenheim. Estimation of fractal signals from noisy measurements
using wavelets. Signal Processing, IEEE Transactions on, 40(3):611–623, 1992.

30



A. Proofs of Section 2

A. Proofs of Section 2

The following lemmas are useful for the below proofs.

Lemma A.1. Let Tn(X) as in (2.1) and suppose the assumptions of Theorem 2.1 are
satisfied. Then, for CX = OX, we have

Tn(X) =
1

n
CT

XCX −
1

n2
1TOTCXCT

XO 1 =
1

n
CT

XCX +OP

(
1

n

)
, (A.1)

where 1 = (1, . . . , 1)T . Furthermore, if DX = WX, we have

Tn(X) =
1

n

D∑
k=1

nk∑
l=1

d2X,k(l). (A.2)

Proof. First, it holds

n∑
t=1

X2
t = XTX = XTOTOX = CT

XCX , X̄n =
1

n
1TX =

1

n
1TOTCX .

From this assertion (A.1) follows by Tn(X) = 1
n

∑n
t=1X

2
t − X̄2

n and X̄n = OP (1/
√
n).

Equation (A.2) follows from

DT
XDX =

D∑
k=1

nk∑
l=1

d2X,k(l)− v2X,D(1),
1

n
v2X,D(1) = X̄2

n.

Lemma A.2. (a) If {Xt, t ∈ Z} is Gaussian and 1-dependent, it holds

cov(dX,k1(l1), dX,k2(l2))

= δk1,k2δl1,l2γX(0) +

(
n−1∑
t=1

[hk1,l1(t)hk2,l2(t+ 1) + hk1,l1(t+ 1)hk2,l2(t)]

)
γX(1),

where δj,k = 1 if j = k and 0 otherwise.

(b) If {Xt, t ∈ Z} is a causal Gaussian AR(1) time series, i.e.

Xt = aXt−1 + et, et
i.i.d.∼ N(0, σ2), |a| < 1,

it holds

cov(dX,k1(l1), dX,k2(l2))

= γX(0)

δk1,k2δl1,l2 +

n−1∑
j=1

aj

(
n−j∑
t=1

[hk1,l1(t)hk2,l2(t+ j) + hk1,l1(t+ j)hk2,l2(t)]

) .
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Proof. The proof follows straightforward from

dX,k(l) =

n∑
t=1

hk,l(t)Xt

and the respective time series structure and is omitted. Note that for an AR(1) time
series as in (b) it holds γ(k) = akγ(0).

Proof of Theorem 2.3.
Let O be any orthogonal matrix. Similar to (A.1), we have

Tn(Y ) =
1

n
CT

Y CY −
1

n2
1TOTCY CT

Y O 1. (A.3)

By construction of CY , it holds E c2Y (l) = E c2X(l) = γX(0) and E(cY (l1)cY (l2)) =
0 for l1 6= l2. Because {Xt} are i.i.d. and O is orthogonal, cX(·) is uncorrelated,
i.e. E(cX(l1)cX(l2)) = 0 for l1 6= l2. Consequently, E

(
CT

Y CY

)
= E

(
CT

XCX

)
and

E
(
CY CT

Y

)
= E

(
CXCT

X

)
= γX(0)Id. Together with (A.3), this leads to

ETn(Y ) =
1

n
E
(
CT

Y CY

)
− 1

n2
1TOT E

(
CY CT

Y

)
O 1

=
1

n
E
(
CT

XCX

)
− 1

n2
1TOT E

(
CXCT

X

)
O 1 = ETn(X). (A.4)

By the independence of {cY (1), . . . , cY (n)} we get E( 1
n2 1TOTCY CT

Y O 1)2 = O( 1
n2 ) as

well as E( 1
n2 1TOTCY CT

Y O 1) = O( 1
n), which implies

var

(
1

n2
1TOTCY CT

Y O 1

)
= O

(
1

n2

)
. (A.5)

as well as

1

n2
1TOTCY CT

Y O 1 = OP

(
1

n

)
. (A.6)

As CX = OX, we have cX(l) =
∑n

p=1O(l, p)Xp and, consequently, as {Xt} is i.i.d.

with E(X2
t ) = σ2 and E(X4

t ) = σ4η, we have

E(c2X(l)) =
n∑
p=1

O2(l, p)σ2 = σ2, E(c4X(l)) =

 n∑
p=1

O4(l, p)

σ4(η − 3) + 2σ4,

which implies

var c2Y (l) = var c2X(l) =

 n∑
p=1

O4(l, p)

σ4(η − 3) + 2σ4

Furthermore, by (A.5) it holds

n var(Tn(Y )) = n var

(
1

n
CT

Y CY

)
+O

(
1

n

)
=

1

n

n∑
l=1

var c2Y (l) +O

(
1

n

)

=
1

n

n∑
l=1

n∑
p=1

O4(l, p)σ4(η − 3) + 2σ4 +O

(
1

n

)
=: λOnσ

4(η − 3) + 2σ4 +O

(
1

n

)
. (A.7)
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As
∑n

p=1O
2(l, p) = 1 for all l due to orthogonality, we have O2(l, p) 6 1 for all l and p.

Hence, we obtain

0 < λOn =
1

n

n∑
l=1

n∑
p=1

O4(l, p) 6
1

n

n∑
l=1

n∑
p=1

O2(l, p) = 1. (A.8)

Furthermore, O is a permutation matrix, iff
∑n

p=1O
4(l, p) =

∑n
p=1O

2(l, p) = 1 holds.
This proves assertion (i) of part (a). To show (ii), let On = W n be a discrete wavelet
transform based on the filter h0, . . . , hM−1. Then, similar to (A.2), we get

Tn(Y ) =
1

n

D∑
k=1

nk∑
l=1

d2Y ,k(l), (A.9)

leading to

n var(Tn(Y )) =

 1

n

D∑
k=1

nk∑
l=1

n∑
p=1

h4k,l(p)

σ4(η − 3) +

(
2− 2

n

)
σ4

=: λWnσ
4(η − 3) +

(
2− 2

n

)
σ4.

By splitting λWn in two parts we get

λWn =
1

n

n1∑
l=1

n∑
p=1

h41,l(p) +
1

n

D∑
k=2

nk∑
l=1

n∑
p=1

h4k,l(p). (A.10)

The first summand of (A.10) corresponds to k = 1, which is the finest level of wavelet
coefficients and the second one to the remaining wavelet levels k = 2, . . . , D. As h4k,l(p) 6
1 for all k, l and p, we get

∑n
p=1 h

4
k,l(p) 6

∑n
p=1 h

2
k,l(p) = 1 such that the second term in

(A.10) can be bounded by 1/2− 1/n. For the first summand, we get

1

n

n1∑
l=1

n∑
p=1

h41,l(p) =
1

2

M−1∑
l=0

h4l <
1

2

as h0, hM−1 6= 0 and
∑M−1

l=0 h2l = 1 by construction of the DWT in (2.7). This shows
(ii). Now, let W n = W n,H be the Haar-wavelet transform. Then, by (2.14), we have
2k−1 entries of 2−k/2 and 2k−1 entries of −2−k/2 in hk,l. This leads to

n∑
p=1

h4k,l(p) = 2k−1
((

2−k/2
)4

+
(
−2−k/2

)4)
= 2−k,

which gives

λWn,H
=

1

n

D∑
k=1

nk∑
j=1

n∑
p=1

h4k,l(p) =

D∑
k=1

1

22k
=

1− (1/4)D+1

1− 1/4
− 1→ 1

3
,
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proving (iii). Now, we prove the asymptotic normality claimed in part b). Since by
(A.6)

Tn(Y ) =
1

n

n∑
l=1

c2Y (l) +OP

(
1

n

)
and as {cY (1), . . . , cY (n)} are (a triangular array of) independent random variables by
construction, it is sufficient to prove the validity of the Lyapunov-condition. Because
X2
t is non-degenerate, we have var(X2

t ) = EX4
t −

(
EX2

t

)2
> 0, which implies η =

EX4
t /(EX

2
t )2 > 1. By (A.7) and (A.8) it holds

1

n

n∑
l=1

var c2Y (l) = 2σ4 + σ4(η − 3)λOn > min(2, η − 1)σ4 > 0. (A.11)

Furthermore, by the independence and centeredness of {Xt}, we get

E c6Y (l) =
n∑

p1,...,p6=1

 6∏
j=1

O(l, pj)

E

 6∏
j=1

Xpj


= O(1)

(EX2
1 )3 + EX2

1 EX4
1

n∑
p=1

O4(l, p)

+
(
EX3

1

)2  n∑
p=1

O3(l, p)

2

+ EX6
1

n∑
p=1

O6(l, p)


= O(1).

Together with (A.11), this yields the Lyapunov condition

1(
var
∑n

l=1 c
2
Y (l)

)3/2 n∑
l=1

E
∣∣c2Y (l)− E c2Y (l)

∣∣3 = O(n−1/2)→ 0,

which concludes the proof.

Proof of Corollary 2.4. As convergence in Mallows’ metric is equivalent to weak
convergence and convergence of the first two moments (compare Bickel and Freedman
(1981), Lemma 8.3), the claimed result follows immediately from Theorem 2.3.

Proof of Theorem 2.5. By (A.2), (A.9) and due to E d2Y ,k(l) = E d2X,k(l) by con-
struction, we get ETn(Y ) = ETn(X). Further, as {Xt} is 1-dependent and Gaussian,
we get from Lemma A.2 (a) that

cov(d2X,k1(l1), d
2
X,k2(l2))

= 2δk1,k2δl1,l2γ
2
X(0)

+ 4δk1,k2δl1,l2

(
n−1∑
t=1

[hk1,l1(t)hk2,l2(t+ 1) + hk1,l1(t+ 1)hk2,l2(t)]

)
γX(0)γX(1)

+ 2

(
n−1∑
t=1

[hk1,l1(t)hk2,l2(t+ 1) + hk1,l1(t+ 1)hk2,l2(t)]

)2

γ2X(1). (A.12)
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holds, such that using (A.9) and comparing the coefficients with (2.17) we get

αn =
8

n

D∑
k=1

nk∑
l=1

(
n−1∑
t=1

hk,l(t)hk,l(t+ 1)

)
(A.13)

βn =
2

n

D∑
k1,k2=1

nk1∑
l1=1

nk2∑
l2=1

(
n−1∑
t=1

[hk1,l1(t)hk2,l2(t+ 1) + hk1,l1(t+ 1)hk2,l2(t)]

)2

.

(A.14)

Similarly, from cov(d2Y ,k1(l1), d
2
Y ,k2

(l2)) = 0 if k1 6= k2 or l1 6= l2 and var(d2Y ,k(l)) =

var(d2X,k(l)) by construction, we get from Lemma A.2 (a)

n var(Tn(Y )) =
1

n

D∑
k=1

nk∑
l=1

var(d2X,k(l)) =
2

n

D∑
k=1

nk∑
l=1

{
γX(0) + 2

n−1∑
t=1

hk,l(t)hk,l(t+ 1)γX(1)

}2

= (2− 2/n)γ2X(0) + αnγX(0)γX(1) + βWnγ
2
X(1)

holds, where

βWn =
2

n

D∑
k=1

nk∑
l=1

(
n−1∑
t=1

[hk,l(t)hk,l(t+ 1) + hk,l(t+ 1)hk,l(t)]

)2

=
8

n

D∑
k=1

nk∑
l=1

(
n−1∑
t=1

hk,l(t)hk,l(t+ 1)

)2

. (A.15)

Since all summands of βWn are also summands of βn, the difference βn − βWn consists
only of quadratic (i.e. nonnegative) summands. Consequently, we get a lower bound
for the difference by choosing a suitable subset of those terms. To this end consider
for k = 1 the pairs (l1, l1 + m), m = M/2, where the shifting is chosen such that for
every index t either h1,l1(t) = 0 or h1,l1+m(t+ 1) = 0 with the exception of one tl1,M for
which h1,l1(t) = h0 6= 0 and h1,l1(t + 1) = hM−1 6= 0. Similarly, we also keep the terms
corresponding to (l2 +m, l2). Consequently, we obtain for n > 2M

βn − βWn >
2

n

D∑
k=1

nk∑
l1,l2=1

l1 6=l2

(
n−1∑
t=1

[hk,l1(t)hk,l2(t+ 1) + hk,l1(t+ 1)hk,l2(t)]

)2

>
4

n

n/2−m∑
l=1

(
n−1∑
t=1

h1,l(t)h1,l+m(t+ 1)

)2

= 2(h0hM−1)
2(1−M/n) > (h0hM−1)

2,

proving (a). Now, let W n = W n,H be the Haar-wavelet transform. Then, we obtain
from (2.14) that

∑n−1
t=1 hk,l(t)hk,l(t+ 1) = 1− 3/2k, which leads together with (A.15) to

βWn =
8

n

D∑
k=1

nk∑
l=1

(
1− 3

2k

)2

= 8

D∑
k=1

1

2k

(
1− 3

2k

)2

→ 16

7
(A.16)

as n→∞. This completes the proof of part (b).
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Proof of Corollary 2.6. As convergence in Mallows’ metric is equivalent to weak
convergence and convergence of the first two moments (compare Bickel and Freedman
(1981), Lemma 8.3), the claimed result follows immediately from Theorem 2.5.

Proof of Theorem 2.7. Denote

Hj(k1, l1, k2, l2) =

n−j∑
t=1

[hk1,l1(t)hk2,l2(t+ j) + hk1,l1(t+ j)hk2,l2(t)] .

On the one hand, by an application of Lemma A.2 (b) and the Gaussianity, we get in
the Wavelet domain

n var(Tn(X)) =
1

n

D∑
k1,k2=1

nk1∑
l1=1

nk2∑
l2=1

cov(d2X,k1(l1), d
2
X,k2(l2))

=
2

n

D∑
k1,k2=1

nk1∑
l1=1

nk2∑
l2=1

cov2(dX,k1(l1), dX,k2(l2))

= 2γ2X(0)
1

n

D∑
k=1

nk∑
l=1

1 + 2
n−1∑
j=1

ajHj(k, l, k, l)


+ 2γ2X(0)

2n−2∑
m=2

am
min(n−1,m−1)∑

j=max(1,m−n+1)

1

n

D∑
k1,k2=1

nk1∑
l1=1

nk2∑
l2=1

Hj(k1, l1, k2, l2)Hm−j(k1, l1, k2, l2).

On the other hand, we get

n var(Tn(X)) = n var

(
1

n

n∑
t=1

(Xt − X̄n)2

)

= n var

(
1

n

n∑
t=1

(Xt − µ)2

)
+ n var((X̄n − µ)2)− 2n cov

(
1

n

n∑
t=1

(Xt − µ)2, (X̄n − µ)2

)
By expanding the latter three terms and exploiting the assumed Gaussianity, we can
easily show that

n var(Tn(X)) = 2γ2X(0)ξ0,n + 2γ2X(0)
∑
m>1

ξm,na
m,

holds with |ξm,n| 6 C for some constant C that does not depend on m or n. Since both
representations above hold for all |a| < 1, a comparison of coefficients yields

n var(Tn(X))

= 2γ2X(0)
1

n

D∑
k=1

nk∑
l=1

1 + 2
n−1∑
j=1

ajHj(k, l, k, l)

+ 2γ2X(0)
2n−2∑
m=2

ξm,na
m.

Similarly, we have

n var(Tn(Y ))

= 2γ2X(0)
1

n

D∑
k=1

nk∑
l=1

1 + 2
n−1∑
j=1

ajHj(k, l, k, l)


+ 2γ2X(0)

2n−2∑
m=2

am
min(n−1,m−1)∑

j=max(1,m−n+1)

1

n

D∑
k=1

nk∑
l=1

Hj(k, l, k, l)Hm−j(k, l, k, l).
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Consequently,

n var(Tn(X))− n var(Tn(Y ))

= γ2X(0)

2n−2∑
m=2

am

2ξm,n −
min(n−1,m−1)∑

j=max(1,m−n+1)

2

n

D∑
k=1

nk∑
l=1

Hj(k, l, k, l)Hm−j(k, l, k, l)


=: γ2X(0)

2n−2∑
m=2

am

2ξm,n −
min(n−1,m−1)∑

j=max(1,m−n+1)

Sn,m(j)

 =: γ2X(0)
∑
m>2

amcm,n.

By an application of the Cauchy-Schwarz inequality |Hj(k1, l1, k2, l2)| 6 2, we get
Sn,m(j) = O(1) uniformly in m and n. Hence,

sup
n
|cm,n| 6 Cm

for some constant C > 0. Using the boundedness of cm,n and a diagonal argument,
one finds a subsequence α(n) such that cm,α(n) → cm as n → ∞. By an application of
dominated convergence as mam is summable, we get∑

m>2

cm,α(n)a
m →

∑
m>2

cma
m.

Furthermore with the notation of Theorem 2.5

lim
n→∞

|c2,α(n)| = |βα(n) − βWα(n)
| > c > 0.

Consequently,
∑

m>2 cma
m 6= 0 (as a function of a), which gives the assertion.

Proof of Theorem 2.8.
Similar to the proof of Theorem 2.5, we get ETn(Ỹ ) = ETn(X). Further, by con-
struction, we have cov(d2

Ỹ ,k1
(l1), d

2
Ỹ ,k2

(l2)) = 0 if k1 6= k2 and cov(d2
Ỹ ,k

(l1), d
2
Ỹ ,k

(l2)) =

cov(d2X,k(l1), d
2
X,k(l2)). By Lemma A.2 (a) we get

n var(Tn(Ỹ )) =
1

n

D∑
k=1

nk∑
l1,l2=1

cov(d2X,k(l1), d
2
X,k(l2))

= (2− 2/n)γ2X(0) + αnγX(0)γX(1) + β̃Wnγ
2
X(1),

where αn as in (A.13) and

β̃Wn =
2

n

D∑
k=1

nk∑
l1,l2=1

(
n−1∑
t=1

[hk,l1(t)hk,l2(t+ 1) + hk,l1(t+ 1)hk,l2(t)]

)2

. (A.17)

Similarly, as in the proof of Theorem 2.5 βn − β̃Wn consists only of positive summands
and can be bounded from below by a suitable subset of summands. We choose k1 = 1,

k2 = 2, and consider all pairs where h2,l2(t) = h
(2)
0 6= 0 while h1,l1(t + 1) = hM−1 6= 0,

t = 2, . . . , n, with h
(2)
0 as in (2.8). As the translation in the second finest level is by 4

while it is by 2 in the finest scale, we need to match properly (1, l1) with (2, l2), which is
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achieved for l1 = (m+2l2) mod n/2, l2 = 1, . . . , n/4−1. There are only n/4−1 instead

of n/4 matches because for l2 = n/4 the element h
(2)
0 is on position n of h2,n/4. Similarly,

we consider h1,l1(t) = h0 and h2,l2(t+ 1) = h
(2)
M2−1. There exist n/4 such matches if m is

odd because in this case M2/4 is an integer and h2,M2/4 has the entry h
(2)
M2−1 on position

1, while this can never happen for m even resulting in n/4 − 1 matches for m/4 even.
Consequently, we obtain for n > 4M

βn − β̃Wn =
2

n

D∑
k1,k2=1

k1 6=k2

nk1∑
l1=1

nk2∑
l2=1

(
n−1∑
t=1

[hk1,l1(t)hk2,l2(t+ 1) + hk1,l1(t+ 1)hk2,l2(t)]

)2

>

(
1

2
− 2

n

) ((
h
(2)
0 hM−1

)2
+
(
h
(2)
3M−3h0

)2)
>

1

4

(
(h

(2)
0 hM−1)

2 + (h0h
(2)
3M−3)

2
)

proving (a).

For (b), it holds for the Haar basis
∑n−1

t=1 hk,l1(t)hk,l2(t+1) = −1/2k for l2 = l1+1 as well
as
∑n−1

t=1 hk,l1(t+ 1)hk,l2(t) = −1/2k for l2 = l1− 1. All other sums are 0. Consequently,

β̃Wn − βWn =
2

n

D∑
k=1

nk∑
l1,l2=1

l1 6=l2

(
n−1∑
t=1

[hk,l1(t)hk,l2(t+ 1) + hk,l1(t+ 1)hk,l2(t)]

)2

=
4

n

D∑
k=1

(nk − 1)

(
− 1

2k

)2

= 4
D∑
k=1

1

23k
− 4

n

D∑
k=1

1

22k
→ 4

7

as n→∞.

Proof of Corollary 2.9. As convergence in Mallows’ metric is equivalent to weak
convergence and convergence of the first two moments (compare Bickel and Freedman
(1981), Lemma 8.3), the claimed result follows immediately from Theorem 2.8.

Proof of Theorem 2.10. First, note that hk,l has only Mk = (2k − 1)(M − 1) + 1
consecutive non-zero elements, which are circularly shifted by 2k. Consequently, for k1
and k2 and l1 (or l2) fixed Hj(k1, l1, k2, l2) = 0 except for O(2|k1−k2|) values of l2 (or l1),
where the constants do not depend on j. In particular, we get

nk1∑
l1=1

nk2∑
l2=1

|Hj(k1, l1, k2, l2)Hm−j(k1, l1, k2, l2)| = O
(

2|k1−k2|min(nk1 , nk2)
)
. (A.18)

The proof of Theorem 2.10 is analogous to the proof of Theorem 2.7 with the exception
that

n var(Tn(X))− n var(Tn(Ỹ )) =: γ2X(0)
∑
m>2

amc̃m,n

with supn |c̃m,n| 6 C̃m for some constant C̃ > 0, where by (A.18)

1

n

D∑
k

nk∑
l1=1

nk∑
l2=1

|Hj(k, l1, k, l2)Hm−j(k, l1, k, l2)| = O(1)
1

n

D∑
k=1

nk = O(1),
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has been used. With the notation of Theorem 2.8, this leads to

|c̃2,n| = |βn − β̃Wn | > c̃ > 0.

Proof of Theorem 2.11. From X = W TDX we get

Xt =
D∑
k=1

nk∑
l=1

hk,l(t)dX,k(l) + X̄n

as 1√
n
vX,D(1) = X̄n. Exploiting symmetry properties, this leads to

γ̂X(1) =
1

n

n−1∑
t=1

(Xt+1 − X̄n)(Xt − X̄n)

=
1

n

D∑
k1=1

nk1∑
l1=1

D∑
k2=1

nk2∑
l2=1

(
n−1∑
t=1

hk1,l1(t+ 1)hk2,l2(t)

)
dX,k1(l1)dX,k2(l2)

=
1

2n

D∑
k1=1

nk1∑
l1=1

D∑
k2=1

nk2∑
l2=1

(
n−1∑
t=1

[hk1,l1(t+ 1)hk2,l2(t) + hk1,l1(t)hk2,l2(t+ 1)]

)
dX,k1(l1)dX,k2(l2)

=
1

2n

D∑
k1=1

nk1∑
l1=1

D∑
k2=1

nk2∑
l2=1

H1(k1, l1, k2, l2) dX,k1(l1)dX,k2(l2) (A.19)

with analogous expressions for γ̂Y (1) and γ̂
Ỹ

(1).
(a) As in the proof of Theorem 2.5, we get by construction of Y and from Lemma A.2 (a)
that E γ̂X(1)− E γ̂Y (1) = 1

4(βn − βWn)γX(1) such that

|E γ̂X(1)− E γ̂Y (1)| > 1

4
(h0hM−1)

2|γX(1)| > 0.

As βn → 4 and βWn,H
→ 16

7 for the Haar basis, we get E γ̂X(1) − E γ̂Y (1) → 3
7γX(1),

such that E γ̂Y (1)→ 4
7γX(1).

(b) From the proof of Theorem 2.8, we get similar as above

|E γ̂X(1)− E γ̂
Ỹ

(1)| = 1

4
(βn − β̃Wn)|γX(1)| > 1

16

(
(h

(2)
0 hM−1)

2 + (h0h
(2)
3M−3)

2
)
|γX(1)| > 0.

As β̃Wn,H
→ 20

7 for the Haar basis, we get E γ̂
Ỹ

(1)→ 5
7γX(1).

Lemma A.3. Under the assumptions of Theorem 2.5 and Theorem 2.8, respectively, we

have (a) γ̂Y (1)
P→ E γ̂Y (1) and (b) γ̂

Ỹ
(1)

P→ E γ̂
Ỹ

(1).

Proof. By the definition of Y , Lemma A.2 (a) and the Gaussianity we get

cov (dY ,k1(l1)dY ,k2(l2) , dY ,k3(l3)dY ,k4(l4))

=

{
O(1), k1 = k3, l1 = l3, k2 = k4, l2 = l4 or k1 = k4, l1 = l4, k2 = k3, l2 = l3,

0, else.
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By H1(k1, l1, k2, l2) = H1(k2, l2, k1, l1), an application of (A.18) as well as (A.19) gives

var(γ̂Y (1)) = O(1)
1

n2

D∑
k1,k2=1

nk1∑
l1=1

nk2∑
l2=1

H2
1 (k1, l1, k2, l2)

= O(1)
1

n2

D∑
k1,k2=1

2|k1−k2|min(nk1 , nk2) = O(1)
1

n

D∑
k1=1

D∑
k2=1

2−min(k1,k2) = O

(
log n

n

)
= o(1),

proving (a).

Similarly, we get

cov
(
d
Ỹ ,k1

(l1)dỸ ,k2(l2) , dỸ ,k3(l3)dỸ ,k4(l4)
)

=


E(dX,k1(l1) dX,k1(l3)) E(dX,k2(l2) dX,k2(l4)), k1 = k3 6= k2 = k4,

E(dX,k1(l1) dX,k1(l4)) E(dX,k2(l2) dX,k2(l3)) k1 = k4 6= k2 = k3,

cov
(
d
X̃,k1

(l1) dX̃,k1
(l2), dX̃,k1

(l3) dX̃,k1
(l4)
)

k1 = k2 = k3 = k4

0, else.

For k1 = k2 = k3 = k4 we get by Gaussianity

cov
(
d
X̃,k1

(l1) dX̃,k1
(l2), dX̃,k1

(l3) dX̃,k1
(l4)
)

= E(dX,k1(l1) dX,k1(l3)) E(dX,k1(l2) dX,k1(l4)) + E(dX,k1(l1) dX,k1(l4)) E(dX,k1(l2) dX,k1(l3)).

Hence (A.19) yields

var(γ̂
Ỹ

(1))

=
1

n2

D∑
k1=1

nk1∑
l1,l3=1

D∑
k2=1

nk2∑
l2,l4=1

H1(k1, l1, k2, l2)H1(k1, l3, k2, l4)

× E (dX,k1(l1)dX,k1(l3)) E (dX,k2(l2)dX,k2(l4))

+
1

n2

D∑
k1=1

nk1∑
l1,l4=1

D∑
k2=1

nk2∑
l2,l3=1

H1(k1, l1, k2, l2)H1(k2, l3, k1, l4)

× E (dX,k1(l1)dX,k1(l4)) E (dX,k2(l2)dX,k2(l3))

= A+B.

By Lemma A.2 (a) we further get

E (dX,k1(l1)dX,k1(l3)) E (dX,k2(l2)dX,k2(l4))

= O(1)δl1,l3δl2,l4 +O(1)δl1,l3H1(k2, l2, k2, l4) +O(1)δl2,l4H1(k1, l1, k1, l3)

+O(1)H1(k2, l2, k2, l4)H1(k1, l1, k1, l3)
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leading to the decomposition A = O(1)[A1 +A2 +A3 +A4] with (exemplary)

A4 =
1

n2

D∑
k1=1

nk1∑
l1,l3=1

D∑
k2=1

nk2∑
l2,l4=1

|H1(k1, l1, k2, l2)H1(k1, l3, k2, l4)H1(k2, l2, k2, l4)H1(k1, l1, k1, l3)|

6
1

n2

D∑
k1,k2=1

nk1∑
l1=1

nk2∑
l2=1

|H1(k1, l1, k2, l2)|
nk1∑
l3=1

|H1(k1, l1, k1, l3)|
nk2∑
l4=1

|H1(k2, l2, k2, l4)|

where we used the fact that by the Cauchy-Schwarz inequality |H1(·)| 6 1. Analogously
to (A.18) we get∑

l1

|H1(k1, l1, k2, l2)| = O
(

2|k1−k2|
)
,

∑
l2

|H1(k1, l1, k2, l2)| = O
(

2|k1−k2|
)
,

nk1∑
l1=1

nk2∑
l2=1

|H1(k1, l1, k2, l2)| = O
(

2|k1−k2|min(nk1 , nk2)
)
.

Consequently,

A4 = O(1)
1

n2

D∑
k1,k2=1

2|k1−k2|min(nk1 , nk2) = O

(
log n

n

)

as in the proof of (a). The terms A1, A2, A3 can be dealt with similarly as can the term
B after an analogous splitting step, completing the proof of (b).

Proof of Corollary 2.12. Since E γ̂X(1) → γX(1), we get by Theorem 2.5 and
Lemma A.3

ρX(1)− ρ̂Y (1)

=
γX(1)− E γ̂X(1)

γX(0)
+

E γ̂X(1)− E γ̂Y (1)

γX(0)
+

E γ̂Y (1)− γ̂Y (1)

γX(0)
+
γ̂Y (1)(γ̂Y (0)− γX(0))

γ̂Y (0)γX(0)

=
E γ̂X(1)− E γ̂Y (1)

γX(0)
+ oP (1),

which together with Theorem 2.11 proves part (a)(i). Lemma A.3 and Theorem 2.11
give (a)(i). The arguments are analogous for (b) and therefore omitted.

B. Proofs of Section 3

Lemma B.1. Let {Xt, t ∈ Z} be Gaussian and γX(r) = O(|r|2d−1), 0 6 d < 1/2, as
|r| → ∞.

(a) It holds,

(i) var(d2X,k(l)) = O(24kd).

If additionally (3.5) holds, then

(ii) cov(d2X,k1(l1), d
2
X,k2(l2)) = O

(
2k12k22(4d−2)k2

)
.
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(b) For lj >M − 1, j = 1, 2, and |l22k2 − l12k1 | >M max(2k1 , 2k2), it holds

(i) cov(d2X,k1(l1), d
2
X,k1(l2)) = O

(
24k1d(|l1 − l2| −M)4d−2

)
.

If additionally (3.5) holds, then we get for k1 6 k2

(ii) cov(d2X,k1(l1), d
2
X,k2(l2)) = O

(
2k12k2

(
|l22k2 − l12k1 | −M max(2k1 , 2k2)

)4d−2)
.

(c) For l1 < M − 1, nk2 −M2k1−k2 > l2 >M − 1 and |l22k2 − l12k1 | >M max(2k1 , 2k2),
it holds

(i) cov(d2X,k1(l1), d
2
X,k2(l2)) = O

(
2k12k2

(
|l22k2 − l12k1 | −M max(2k1 , 2k2)

)4d−2)
+O

(
24dk1(nk1 − l2 −M)4d−2

)
.

If additionally (3.5) holds, then

(ii) cov(dX,k1(l1), dX,k2(l2)) = O

(
2k12k2

(
|l22k2 − l12k1 | −M max(2k1 , 2k2)

)4d−2)
+O

(
2k12k2(n− l22k2 −M2k1)4d−2

)
.

(d) It holds,

var(dX,k(l)) =

{
τ2k , l >M − 1

r̃kl, l < M − 1
= τ2k + rkl1(l < M − 1)

with rkj = r̃kj − τ2k such that τ2k = O(22kd) as well as maxj |rkj | = O(22dk).

(e) For 0 6 d < 1/4 it holds varTn(X) = O(1/n).

All rates above are uniformly in l1, l2.

Proof. First, note that for l1, l2 >M − 1 we get by (2.11)

cov(dX,k1(l1), dX,k2(l2)) =

Mk1
−1∑

s1=0

h(k1)s1

Mk2
−1∑

s2=0

h(k2)s2 γ
(
l22

k2 − s2 − l12k1 + s1

)

6

Mk2
−1∑

r=1−Mk1

Mk1
−1∑

s=0

(h
(k2)
s−r )

2

1/2 ∣∣∣γ (l22k2 − l12k1 − r)∣∣∣
= O(1)

Mk2
−1∑

r=1−Mk1

Mk1
−1∑

s=0

(h
(k2)
s−r )

2

1/2 ∣∣∣l22k2 − l12k1 − r∣∣∣2d−1 (B.1)

where

Mk1
−1∑

s=0

(h
(k2)
s−r )

2 6 1, (B.2)

Mk2
−1∑

r=1−Mk1

∣∣∣l22k2 − l12k1 − r∣∣∣2d−1 = O
(

22dmax(k1,k2)
)
. (B.3)
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Due to Gaussianity, it holds

cov(d2X,k(l1), d
2
X,k(l2)) = 2(cov(dX,k(l1), dX,k(l2)))

2, (B.4)

which implies (a)(i) if formula (2.11) holds. Replacing (B.2) by (3.5) yields (a)(ii) anal-
ogously. For (2.10), i.e. if circular wrapping is present, for one or both of the wavelet
coefficients analogous bounds hold for both summands of (2.10), so that we arrive at
(a)(i) as the covariance is a bilinear form and each of the possibly 4 terms is bounded
in the same way.

By |l22k2 − l12k1 | >M max(2k1 , 2k2) we can replace (B.3) by

Mk2
−1∑

r=1−Mk1

∣∣∣l22k2 − l12k1 − r∣∣∣2d−1 = O

(
2max(k1,k2)

(
|l22k2 − l12k1 | −M max(2k1 , 2k2)

)2d−1)
.

(B.5)

Together with (B.4) this implies (b).

In the situation of (c) dX,k1(l1) is wrapped (i.e. follows (2.10)) while dX,k2(l2) is not
wrapped (i.e. follows (2.11)). The assertions are obtained analogously by separately
treating the two sums in dX,k1(l1) and noting that

n− l22k2 + l12
k1 + r > n− l22k2 −M2k1 .

By stationarity of {Xt, t ∈ Z}, we get that E(d2X,k(l)) is identical for all l >M − 1 and

hence does not depend on l. Par (a)(i) implies E(d2X,k(l)) = O(22dk), which yields (d).
Assertion (e) is a straight-forward calculation using the rate of decay of the covariances
by noting that due to Gaussianity cov(X2

t , X
2
t+r) = O(|r|4d−2).

Proof of Theorem 3.1. Analogously to (A.2), we have Tn(X∗W ) = 1
n

∑D
k=1

∑nk
l=1 d

∗2
k (l),

which implies

E∗(Tn(X∗W )) =
1

n

D∑
k=1

nk∑
l=1

E∗(d∗2k (l)) =
1

n

D∑
k=1

nk∑
j=1

d2X,k(j) = Tn(X).

For the conditional variance, as {d∗k(l) : k, l} are i.i.d. with d∗k(l) uniformly distributed
on the set {dk(1), . . . , dk(nk)}, we obtain

n var∗(Tn(X∗W )) =
1

n

D∑
k=1

nk∑
l=1

var∗
(
d∗2k (l)

)

=
1

n

D∑
k=1

nk∑
l=1

 1

nk

nk∑
j=1

d4X,k(j)−

 1

nk

nk∑
j=1

d2X,k(j)

2
=

1

n

D∑
k=1

nk∑
j=1

d4X,k(j)−
1

n2

D∑
k=1

2k
nk∑

j1,j2=1

d2X,k(j1)d
2
X,k(j2).
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Further, by taking unconditional expectations above and rearranging terms, we get

E (n var∗(Tn(X∗W )))

=
1

n

D∑
k=1

nk∑
j=1

var
(
d2X,k(j)

)
+

D∑
k=1

 1

n

nk∑
j=1

(
E(d2X,k(j))

)2 − 1

2k

 1

nk

nk∑
j=1

E
(
d2X,k(j)

)2
− 1

n2

D∑
k=1

2k
nk∑

j1,j2=1

cov
(
d2X,k(j1), d

2
X,k(j2)

)
=: A1 +A2 −A3.

As var(d2X,k(j)) = var(d2Y ,k(j)) by construction of Y , we get A1 = n var(Tn(Y )).

First consider (b) with d < 1/4. ¿From Lemma B.1(d) and on noting that the mixed
terms cancel, we get

A2 =
1

n

D∑
k=1

nk∑
j=1

r2kj1{j<M−1} −
D∑
k=1

1

2k

 1

nk

nk∑
j=1

rkj1{j<M−1}

2

= O

(
1

n

D∑
k=1

24dk

)
+O

(
1

n2

D∑
k=1

2(4d+1)k

)
= O(1)

{
logn
n , d = 0,

n4d−1, d > 0,
= o(1)

where
∑D

k=1 2sk = O(2sD) = O(ns) for s > 0 has been used. Concerning A3, we can split
the summation in the four parts (i) j1 >M − 1 as well as |j1− j2| >M , (ii) j1 >M − 1
and |j1 − j2| < M , (iii) j1 < M − 1 and j2 < nk −M and finally (iv) j1 < M − 1 and
j2 > nk −M . We can then treat the summands in (i) by Lemma B.1 (b) the ones in (ii)
and (iv) by (a) and the ones in (iii) by (c) to obtain for d < 1/4

A3 =
1

n2

D∑
k=1

2k
nk∑

j1,j2=1

cov
(
d2X,k(j1), d

2
X,k(j2)

)
=

1

n

∑
k

24kd
∑

M<|r|<nk

(|r| −M)4d−2 +
1

n

D∑
k=1

24kd +
1

n2

D∑
k=1

2k+4dk
nk∑
j2=1

(nk − j2 −M)4d−2

= O(n4d−1) = o(1).

For d = 1/4, the different normalization immediately leads to A2/ log n = o(1) while for
A3 the sums over r are no longer O(1) but only O(D − k). However,

A3

log n
= O(1)

1

n log n

D∑
k=1

(D − k)2k = O(1)
1

n log n

D−1∑
k=0

k2D−k = O(1)
1

log n

D−1∑
k=0

k2−k = o(1).

This completes the proof for d = 1/4.

The assertion in a) holds because all rates from Lemma B.1 remain true in the i.i.d. case
even for non-Gaussian data because all involved covariances are either bounded by one
(in (a)) or are zero due to the independence (in (b) and (c)) which shows the negligibility
of A3. Lemma B.1 (d) also remains true with rk,l = 0, which even shows that A2 = 0
for i.i.d. data.
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Proof of Theorem 3.2. We have Tn(X̃
∗
W ) = 1

n

∑D
k=1

∑nk
l=1 d̃

∗2
k (l) and by splitting

the sum with respect to the (non-overlapping) bootstrap blocking, we get for the mean

E∗(Tn(X̃
∗
W )) =

1

n

D∑
k=1

Nk∑
s=1

E∗

 sLk∑
j=(s−1)Lk+1

d̃∗2k (j)

 =
1

n

D∑
k=1

Nk∑
s=1

1

Nk

Nk∑
t=1

tLk∑
j=(t−1)Lk+1

d2X,k(j)

=
1

n

D∑
k=1

nk∑
l=1

d2X,k(l) = Tn(X)

and as d̃∗k1(l1) and d̃∗k2(l2) are conditionally independent for k1 6= k2, but also if l1 and
l2 are not in the same block, we obtain for the variance

n var∗(Tn(X̃
∗
W )) =

1

n

D∑
k=1

Nk∑
s=1

var∗

 sLK∑
j=(s−1)Lk+1

d̃∗2k (j)


=

1

n

D∑
k=1

Nk∑
s=1

 1

Nk

Nk∑
t=1

 tLk∑
j=(t−1)Lk+1

d2X,k(j)

2

−

 1

Nk

Nk∑
t=1

tLk∑
j=(t−1)Lk+1

d2X,k(j)

2
=

1

n

D∑
k=1

Nk∑
t=1

tLk∑
j1,j2=(t−1)Lk+1

d2X,k(j1)d
2
X,k(j2)

− 1

n

D∑
k=1

1

Nk

Nk∑
t1,t2=1

t1Lk∑
j1=(t1−1)Lk+1

t2Lk∑
j2=(t2−1)Lk+1

d2X,k(j1)d
2
X,k(j2).

Further, by taking unconditional expectations above and rearranging terms, we get

E
(
n var∗(Tn(X̃

∗
W ))

)
=

1

n

D∑
k=1

Nk∑
t=1

tLk∑
j1,j2=(t−1)Lk+1

cov(d2X,k(j1), d
2
X,k(j2))

+
1

n

D∑
k=1

 Nk∑
t=1

 tLk∑
j=(t−1)Lk+1

E(d2X,k(j))

2

− 1

Nk

(
nk∑
l=1

E(d2X,k(l))

)2


− 1

n

D∑
k=1

1

Nk

nk∑
l1,l2=1

cov(d2X,k(l1), d
2
X,k(l2))

=: Ã1 + Ã2 − Ã3.

Before we treat the above terms let us first consider the following sums which will play
an important role in the proofs: By 2bk 6 nk = n/2k we get for d < 1/4

1

n

D∑
k=1

24dk+bk =
∑

k6A(n)

2(4d−1)k
2bk+k

n
+

∑
k>A(n)

2(4d−1)k
2bk

nk
,

6 sup
k6A(n)

2bk+k

n

1

1− 24d−1
+

∑
k>A(n)

2(4d−1)k = o(1). (B.6)
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Furthermore,

D∑
k=1

bk2
−k−bk 6 sup

k6A(n)

bk
2bk

A(n)∑
k=1

2−k +
∑

k>A(n)

2−k = o(1). (B.7)

Similarly,

D∑
k=1

2(4d−1)(bk+k) 6 sup
k6A(n)

2(4d−1)bk
∑

k6A(n)

2(4d−1)k +
∑

k>A(n)

2(4d−1)(k+bk)

6 sup
k6A(n)

2(4d−1)bk
1

1− 24d−1
+

∑
k>A(n)

2(4d−1)k = o(1). (B.8)

Similar to the proof of Theorem 3.1, we can treat Ã2 with the help of Lemma B.1(d) to
obtain

Ã2 =
2

n

D∑
k=1

τ2k

Nk∑
t=1

tLk∑
j=(t−1)Lk+1

rkj1(j < M − 1) +
1

n

D∑
k=1

Nk∑
t=1

 tLk∑
j=(t−1)Lk+1

rkj1(j < M − 1)

2

− 2

n

D∑
k=1

1

Nk

n

2k
τ2k

nk∑
l=1

rkl1{l<M−1} −
1

n

D∑
k=1

1

Nk

(
nk∑
l=1

rkl1{l<M−1}

)2

= O

(
1

n

D∑
k=1

24dk

)
+O

(
1

n

D∑
k=1

24dk+bk

)
+O

(
1

n2

D∑
k=1

24dk+k+bk

)

= O

(
1

n

D∑
k=1

24dk+bk

)
= o(1)

by (B.6). Concerning Ã3, from Lemma B.1, we get similarly to the treatment of A3 in
the proof of Theorem 3.1

Ã3 =
1

n

D∑
k=1

1

Nk

nk∑
l1,l2=1

cov(d2X,k(l1), d
2
X,k(l2))

= O(1)
1

n

D∑
k=1

2bk+4kd
∑

M<|r|<nk

(|r| −M)4d−2 +O(1)
1

n

D∑
k=1

2bk+4kd

+O(1)
1

n2

D∑
k=1

2k+bk+4kd
∑
l2

(nk − l2 −M)4d−2 +O(1)
1

n2

D∑
k=1

2k+bk+4kd

= O(1)
1

n

D∑
k=1

2bk+4kd = o(1)

by (B.6). Now, it remains to show that n var(Tn(Ỹ ))− Ã1 is of low order. By using the
fact that

n var(Tn(Ỹ )) =
1

n

D∑
k=1

Nk∑
t1,t2=1

t1Lk∑
j1=(t1−1)Lk+1

t2Lk∑
j2=(t2−1)Lk+1

cov(d2X,k(j1), d
2
X,k(j2)),
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by symmetry, this leads to

n var(Tn(Ỹ ))− Ã1 =
2

n

D∑
k=1

Nk∑
t1,t2=1
t1<t2

t1Lk∑
j1=(t1−1)Lk+1

t2Lk∑
j2=(t2−1)Lk+1

cov(d2X,k(j1), d
2
X,k(j2))

6 B̃1 + B̃2 + B̃3 + B̃4,

where we use a similar splitting as in Ã3 above in order to use different parts of
Lemma B.1: B̃1 is the sum over all indices fulfilling j2−j1 > M as well as j1 > dMk/2

ke.
B̃2 is the sum over j2−j1 6M . These two are the main parts which yield the restrictions
on the bandwidth. The remaining terms have to be treated differently due to the wrap-
ping effect present in wavelet coefficients: B̃3 is the sum over j1 < dMk/2

ke, nk −M >
j2 > dMk/2

ke, j2 − j1 > M and B̃4 the sum over j1 6M as well as j2 > nk −M .

To treat B̃1, first note that for a general positive function f(·) it holds

L∑
j1=1

2L∑
j2=L+1

f(j2 − j1) =

L∑
j1=1

2L−j1∑
r=L+1−j1

f(r) =

2L−1∑
r=1

f(r)

min(L,2L−r)∑
j1=max(1,L+1−r)

6
2L∑
r=1

rf(r), (B.9)

as well as∑
j2>j1+L

f(j2 − j1) 6
∑
r>L

f(r). (B.10)

Combined with the results of Lemma B.1(b)(i) this allows for the following splitting of
the sum

B̃1 =
1

n

D∑
k=1

Nk∑
t1,t2=1
t1<t2

t1Lk∑
j1=(t1−1)Lk+1

t2Lk∑
j2=(t2−1)Lk+1

cov(d2X,k(j1), d
2
X,k(j2))1{j1>dMk/2ke,j2−j1>M}

= O(1)
1

n

D∑
k=1

24dk
∑
t1

 Lk∑
|r|>M

r(r −M)4d−2 + Lk
∑

r>max(M,Lk)

|r −M |4d−2


= O(1)
D∑
k=1

2(4d−1)k2−bk

{
24dbk , d 6= 0,

bk, d = 0,
+O(1)

D∑
k=1

2(4d−1)k2bk(4d−1) = o(1)

by (B.7) as well as (B.8). Concerning B̃2 we get

B̃2 =
1

n

D∑
k=1

Nk∑
t1,t2=1
t1<t2

t1Lk∑
j1=(t1−1)Lk+1

t2Lk∑
j2=(t2−1)Lk+1

cov(d2X,k(j1), d
2
X,k(j2))1{j2−j16M}

= O(1)
1

n

D∑
k=1

24dk
Nk−1∑
t1=1

t1Lk∑
j1=(t1−1)Lk+1

n/2k∑
j2=t1Lk+1

1{j2−j16M}

= O(1)
1

n

D∑
k=1

24dkNk = O(1)
D∑
k=1

2(4d−1)k−bk = O(1)
D∑
k=1

2(4d−1)(bk+k) = o(1)
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by (B.8). Concerning B̃3 we need to apply Lemma B.1 (c) (i), where the first summand
there can be treated analogously to B̃1, yielding

B̃3 = o(1) +O(1)
1

n

D∑
k=1

Nk∑
t2=1

t2Lk∑
j2=(t2−1)Lk+1

(
n/2k − j2 −M

)4d−2
24dk

= o(1) +O(1)
1

n

D∑
k=1

24dk
∑
r∈Z

r4d−2 = o(1) +O(n4d−1) = o(1).

In the term B̃4 the number of summands in each level is bounded by M2, so that we get
by Lemma B.1 (a) that B̃4 = O(n4d−1) = o(1).

Proof of Theorem 3.3. By construction of the rectangular wavelet lattice and
splitting the sum with respect to the (non-overlapping) bootstrap blocking, we can write

Tn(X̌
∗
W ) =

1

n

D∑
k=1

nk∑
l=1

ď∗2k (l) =
1

n

D∑
k=1

nk∑
l=1

q∗2k (2k−1l) =
1

n

D∑
k=1

1

2k−1

n/2∑
l=1

q∗2k (l)

=
1

n

n/2∑
l=1

(
D∑
k=1

2−k+1q∗2k (l)

)
=

1

n

N∑
s=1

 sL∑
t=(s−1)L+1

D∑
k=1

2−k+1q∗2k (t)

 , (B.11)

whereN = n/(2L) and L = 2b. Now, as {
∑sL

t=(s−1)L+1
1
n

∑D
k=1 2−k+1q∗2k (t), s = 1, . . . , N}

are i.i.d. conditionally on {qk(t), k, t}, we get for the mean

E∗(Tn(X̌
∗
W )) =

1

n

N∑
s=1

E∗

 sL∑
t=(s−1)L+1

D∑
k=1

2−k+1q∗2k (t)


=

1

n

N∑
s=1

1

N

N∑
p=1

pL∑
t=(p−1)L+1

D∑
k=1

2−k+1q2X,k(t) = Tn(X)

by a representation of Tn(X) analogous to (B.11). For the variance we get

n var∗(Tn(X̌
∗
W )) =

N

n
var∗

 L∑
t1=1

D∑
k1=1

2−k1+1q∗2k1 (t1)


=

1

n

N∑
p=1

 pL∑
t1=(p−1)L+1

D∑
k1=1

2−k1+1q2X,k1(t1)

2

− n

N
T 2
n(X).

Taking unconditional expectations above and rearranging terms leads to

E
(
n var∗(Tn(X̌

∗
W ))

)
=

1

n

N∑
p=1

var

 pL∑
t=(p−1)L+1

D∑
k=1

2−k1+1q2X,k(t)


+

 1

n

N∑
p=1

 pL∑
t=(p−1)L+1

D∑
k=1

2−k+1 E q2X,k(t)

2

− n

N
(ETn(X))2


− n

N
var(Tn(X))

= Ǎ1 + Ǎ2 − Ǎ3.
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We get from Lemma B.1 (e) (for d < 1/4).

Ǎ3 = O

(
1

N

)
= O

(
L

n

)
= o(1).

Furthermore, by Lemma B.1 (d) we get

Ǎ2 =
1

n

N∑
p=1

 pL∑
t=(p−1)L+1

D∑
k=1

2−k+1 E q2X,k(t)

2

− n

N

 1

n

N∑
p=1

pL∑
t=(p−1)L+1

D∑
k=1

2−k+1 E q2X,k(t)

2

=
1

n

N∑
p=1

 pL∑
t=(p−1)L+1

D∑
k=1

2−k+1O(22kd)1{t<2kM}

2

− 1

Nn

 N∑
p=1

pL∑
t=(p−1)L+1

D∑
k=1

2−k+1O(22kd)1{t<2kM}

2

+
2

n

N∑
p=1

 pL∑
t=(p−1)L+1

D∑
k=1

2−k+1O(22kd)1{t<2kM}

 pL∑
t=(p−1)L+1

D∑
k=1

2−k+1τ2k


− 2

Nn

 N∑
p=1

pL∑
t=(p−1)L+1

D∑
k=1

2−k+1O(22kd)1{t<2kM}

 N∑
p=1

pL∑
t=(p−1)L+1

D∑
k=1

2−k+1τ2k


=

{
Ln4d−2, 0 < d < 1

4 ,

L log n/n, d = 0,
= o(1).

Further, by using the representation

n var(Tn(X)) =
1

n

D∑
k1,k2=1

N∑
t1,t2=1

t1L∑
j1=(t1−1)L+1

t1L∑
j2=(t2−1)L+1

1

2k1−1
1

2k2−1
cov(q2X,k1(j1), q

2
X,k2(j2))

we obtain

n var(Tn(X))− Ǎ1 =
1

n

D∑
k1,k2=1

N∑
t1,t2=1

t1 6=t2

t1L∑
j1=(t1−1)L+1

t1L∑
j2=(t2−1)L+1

1

2k1−1
1

2k2−1
cov(q2X,k1(j1), q

2
X,k2(j2))

6 B̌1 + B̌2,

where B̌1 to be the sum over higher levels k2 > log2[(L−
√
L)/(M + 2)], while B̌2 to be

the sum over k2 < log2[(L−
√
L)/(M + 2)]. By Lemma B.1 (a) (ii)

B̌1 = O(1)
1

n

D∑
k1=1

D∑
k2=log2 [(L−

√
L)/(M+2)]

N∑
t1,t2=1

t1 6=t2

t1L∑
j1=(t1−1)L+1

t1L∑
j2=(t2−1)L+1

2(4d−2)k2

= O(n log n)
D∑

k2=log2[(L−
√
L)/(M+2)]

2(4d−2)k2 = O
(
nL4d−2 log n

)
= o(1)
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by assumption.

The lower level summands B̌2 = B̌2,1 + B̌2,2 + B̌2,3 + B̌2,4 need to be further split

similarly to the treatment of Ã3 in the proof of Theorem 3.2: B̌2,1 is the sum over

|j2 − j1| > (M + 2)2k2 (which implies |dj2/2k2−1e2k2 − djk11 /2k1−1e| > (M + 2) 2k2) as
well as js > (M − 1)2ks−1, s = 1, 2, (implying djs/2ks−1e > dMks/2

kse). B̌2,2 sums over
|j2 − j1| < (M + 2)2k2 , B̌2,3 sums over js < (M − 1)2ks−1 as well as jt < n/2−M2ks−1

(implying djt/2kt−1e < n/2kt −M2ks−kt) as well as |j2 − j1| > (M + 2)2k2 with s = 1
and t = 2 as well as s = 2 and t = 1. Finally B̌2,4 is the sum over js < (M − 1)2ks−1

and jt > n/2−M2ks−1 with t = 1 and s = 2 as well as t = 2 and s = 1.

Using a combination of Lemma B.1 (a) (ii) and (b) (ii) and the fact that min(a, b) 6
aαb1−α for any 0 6 α 6 1 we obtain by an application of (B.9) and (B.10) (similarly to
the treatment of B̃1 in the proof of Theorem 3.2)

B̌2,1 = O(1)
1

n

log2[(L−
√
L)/(M+2)]∑

k16k2=1

N∑
t1,t2=1

t1 6=t2

t1L∑
j1=(t1−1)L+1

t1L∑
j2=(t2−1)L+1

×min

(∣∣∣|j2 − j1| − (M + 2)2k2
∣∣∣4d−2 , 2(4d−2)k2)

= O(1)

log2[(L−
√
L)/(M+2)]∑

k16k2

1

L

2L∑
r=(M+2)2k2+1

(r − (M + 2)2k2)(r − (M + 2)2k2)4d−2

+O(1)

log2[(L−
√
L)/(M+2)]∑

k16k2

2k22(4d−2)k2/(2−4d)
1

L

2L∑
r=(M+2)2k2+1

(r − (M + 2)2k2)(4d−2)(1−1/(2−4d))

+O(1)

log2[(L−
√
L)/(M+2)]∑

k16k2

∑
|r|>
√
L

|r|4d−2,

where we used that L− (M +2)2k2 >
√
L. By standard calculations all three summands

converge to 0 for d < 1/4, so that B̌2,1 = o(1). Term B̌2,2 can be dealt with analogously

to term B̃2 in the proof of Theorem 3.2 using Lemma B.1 (a) (ii) resulting in the rate
O((logL)/L max(logL,L4d)) on noting that for any given t1∑

t2 6=t1

∑
j1,j2

1{|j2−j1|<(M+2)2k2} = O(22k2).

Terms B̌2,3 can be dealt with similarly to B̃3 using Lemma B.1 c) (ii) leading to the
additional rate L logL/n = o(1), while B̌2,4 yield by Lemma B.1 (a) (ii) the rate
logL/nmax(logL,L4d) = o(1).
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C. Proofs of Section 4

Proof of Theorem 4.1. It holds for J > 1

E a(n, d) |Tn(X)− Tn,J(X)| = a(n, d)

n

D∑
k=D−J+1

nk∑
l=1

E d2k(l)

∼d a(n, d)
D∑

k=D−J+1

2(2d−1)k = a(n, d)2(2d−1)(D−J+1) 1− 2(2d−1)J

1− 22d−1

∼d a(n, d)n2d−1 2−(2d−1)J = 2(1−2d)J

{
n2d−1/2, 0 6 d < 1/4,

(log n)−1/2, d = 1/4,

where X ∼d Y means kd 6 X/Y 6 Kd for some constants 0 < kd 6 Kd < ∞ only
depending on d. Because the latter term converges to zero, assertion a) is proven. For
d > 1/4 we obtain (even for J = 1)

E
a(n, d)

n
d2D(1) > cdn

−2d22dD = cd.
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