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Multivariate time series present many challenges, especially when
they are high dimensional. The paper’s focus is twofold. First, we
address the subject of consistently estimating the autocovariance se-
quence; this is a sequence of matrices that we conveniently stack into
one huge matrix. We are then able to show consistency of an estimator
based on the so-called flat-top tapers; most importantly, the consis-
tency holds true even when the time series dimension is allowed to
increase with the sample size. Secondly, we revisit the linear process
bootstrap (LPB) procedure proposed by McMurry and Politis (Jour-
nal of Time Series Analysis, 2010) for univariate time series. Based
on the aforementioned stacked autocovariance matrix estimator, we
are able to define a version of the LPB valid for multivariate time
series. Under rather general assumptions, we show that our multi-
variate linear process bootstrap (MLPB) has asymptotic validity for
the sample mean in two important cases: (a) when the time series
dimension is fixed, and (b) when it is allowed to increase with sample
size. As an aside, in case (a) we show that the MLPB works also for
spectral density estimators which is a novel result even in the uni-
variate case. We conclude with a simulation study that demonstrates
the superiority of the MLPB in some important cases.

1. Introduction. Resampling methods for dependent data such as time
series have been studied extensively over the last decades. For an overview
of existing bootstrap methods see the monograph of Lahiri (2003), and the
review papers by Bühlmann (2002), Paparoditis (2002), Härdle, Horowitz
and Kreiss (2003), Politis (2003a) or the recent review paper by Kreiss and
Paparoditis (2011). Among the most popular bootstrap procedures in time
series analysis we mention the autoregressive (AR) sieve bootstrap [cf. Kreiss
(1992, 1999), Bühlmann (1997), Kreiss, Paparoditis and Politis (2011)], and
block bootstrap and its variations [cf. Künsch (1989), Liu and Singh (1992),
Politis and Romano (1992,1994), etc.]. A recent addition to the available
time series bootstrap methods was the linear process bootstrap (LPB) in-
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2 C. JENTSCH AND D. N. POLITIS

troduced by McMurry and Politis (2010) who showed its validity for the
sample mean for univariate stationary processes without actually assuming
linearity of the underlying process.

The main idea of the LPB is to consider the time series data of length
n as one large n-dimensional vector and to estimate appropriately the en-
tire covariance structure of this vector. This is executed by using tapered
covariance matrix estimators based on flat-top kernels that were defined in
Politis (2001). The resulting covariance matrix is used to whiten the data by
pre-multiplying the original (centered) data with its inverse Cholesky ma-
trix; a modification of the eigenvalues, if necessary, ensures positive definite-
ness. This decorrelation property is illustrated in Figures 5 and 6 in Jentsch
and Politis (2013). After suitable centering and standardizing, the whitened
vector is treated as having independent and identically distributed ( i.i.d.)
components with zero mean and unit variance. Finally, i.i.d. resampling from
this vector and pre-multiplying the corresponding bootstrap vector of resid-
uals with the Cholesky matrix itself results in a bootstrap sample that has
(approximately) the same covariance structure as the original time series.

Due to the use of flat-top kernels with compact support, an abruptly
dying-out autocovariance structure is induced to the bootstrap residuals.
Therefore, the LPB is particularly suitable for—but not limited to—time
series of moving average (MA) type. In a sense, the LPB could be consid-
ered the closest analog to an MA-sieve bootstrap which is not practically
feasible due to nonlinearities in the estimation of the MA parameters. A
further similarity of the LPB to MA fitting, at least in the univariate case,
is the equivalence of computing the Cholesky decomposition of the covari-
ance matrix to the innovations algorithm; cf. Rissanen and Barbosa (1969),
Brockwell and Davis (1988), and Brockwell and Mitchell (1997)—the latter
addressing the multivariate case.

Typically, bootstrap methods extend easily from the univariate to the
multivariate case, and the same is true for time series bootstrap procedures
such as the aforementioned AR- sieve bootstrap and the block bootstrap.
By contrast, it has not been clear to date if/how the LPB could be success-
fully applied in the context of multivariate time series data; a proposal to
that effect was described in Jentsch & Politis (2013)–who refer to an earlier
preprint of the paper at hand—but it has been unclear to date whether the
multivariate LPB is asymptotically consistent and/or it competes well with
other methods. Here we attempt to fill this gap: we show how to implement
the LPB in a multivariate context, and prove its validity for the sample mean
and for spectral density estimators—the latter being a new result even in
the univariate case. Note that the limiting distributions of the sample mean
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and of kernel spectral density estimators depend only on the second-order
moment structure. Hence, it is intuitive that the LPB would be well-suited
for such statistics since it generates a linear process in the bootstrap world
that mimics well the second-order moment structure of the real world. Fur-
thermore, in the spirit of the times, we consider the possibility that the time
series dimension is increasing with sample size, and identify conditions un-
der which the multivariate linear process bootstrap (MLPB) maintains its
asymptotic validity even in this case. The key here is to address the subject
of consistently estimating the autocovariance sequence; this is a sequence of
matrices that we conveniently stack into one huge matrix. We are then able
to show consistency of an estimator based on the aforementioned flat-top
tapers; most importantly, the consistency holds true even when the time
series dimension is allowed to increase with the sample size.

The paper is organized as follows. In Section 2, we introduce the notation
of this paper, discuss tapered covariance matrix estimation for multivariate
stationary time series and state assumptions used throughout the paper; we
then present our results on convergence with respect to operator norm of
tapered covariance matrix estimators. The MLPB bootstrap algorithm and
some remarks can be found in Section 3 and results concerned with validity
of the MLPB for the sample mean and kernel spectral density estimates
are summarized in Section 4. Asymptotic results established for the case
of increasing time series dimension are stated in Section 5, where operator
norm consistency of tapered covariance matrix estimates and a validity re-
sult for the sample mean are discussed. A finite-sample simulation study is
presented in Section 6. Finally, all proofs, some additional simulations and
a real data example on the weighted mean of an increasing number of stock
prices taken from the German stock index DAX can be found at the paper’s
supplementary material [Jentsch and Politis (2014)], which is available at
http://www.math.ucsd.edu/~politis/PAPER/MLPBsupplement.pdf.

2. Preliminaries. Suppose we consider an R
d-valued time series pro-

cess {Xt, t ∈ Z} with Xt = (X1,t, . . . , Xd,t)
T and we have data X1, . . . , Xn

at hand. The process {Xt, t ∈ Z} is assumed to be strictly stationary and
its (d× d) autocovariance matrix C(h) = (Cij(h))i,j=1,...,d at lag h ∈ Z is

C(h) = E
(
(Xt+h − µ)(Xt − µ)T

)
,(2.1)

imsart-aos ver. 2014/07/30 file: MLPB_ims-template_black.tex date: September 30, 2014



4 C. JENTSCH AND D. N. POLITIS

where µ = E(Xt) and the sample autocovariance Ĉ(h) = (Ĉij(h))i,j=1,...,d

at lag |h| < n is defined by

Ĉ(h) =
1

n

min(n,n−h)∑

t=max(1,1−h)

(Xt+h −X)(Xt −X)T ,(2.2)

whereX = 1
n

∑n
t=1Xt is the d-variate sample mean vector. Here and through-

out the paper, all matrix-valued quantities are written as bold letters, all
vector-valued quantities are underlined, AT indicates the transpose of a ma-

trix A, A the complex conjugate of A and AH = A
T
denotes the transposed

conjugate of A. Note that it is also possible to use unbiased sample auto-
covariances, i.e., having n − |h| instead of n in the denominator of (2.2).
Usually the biased version as defined in (2.2) is preferred because it guar-
antees a positive semi-definite estimated autocovariance function, but our
tapered covariance matrix estimator discussed in Section 2.2 is adjusted in
order to become positive definite in any case.

Now, let X = vec(X) = (X1, . . . , Xdn)
T be the dn-dimensional vectorized

version of the (d× n) data matrix X = [X1 : X2 : · · · : Xn] and denote the
covariance matrix of X, which is symmetric block Toeplitz, by Γdn, that is,

Γdn =

(
C(i− j)

i, j = 1, . . . , n

)
=

(
Γdn(i, j)

i, j = 1, . . . , dn

)
,(2.3)

where Γdn(i, j) = Cov(Xi, Xj) is the covariance between the ith and jth
entry of X. Note that the second order stationarity of {Xt, t ∈ Z} does not
imply second order stationary behavior of the vectorized dn-dimensional
data sequence X. This means that the covariances Γdn(i, j) truly depend
on both i and j and not only on the difference i − j. However, the follow-
ing one-to-one correspondence between {Cij(h), h ∈ Z, i, j = 1, . . . , d} and
{Γdn(i, j), i, j ∈ Z} holds true. Precisely, we have

Γdn(i, j) = Cov(Xi, Xj)

= Cov(Xm1(i),m2(i), Xm1(j),m2(j))(2.4)

= Cm
1
(i,j)(m2(i, j)),

where m1(i, j) = (m1(i),m1(j)) and m2(i, j) = m2(i)−m2(j) with m1(k) =
(k − 1)mod d + 1 and m2(k) = ⌈k/d⌉ and ⌈x⌉ denotes the smallest integer
greater or equal to x ∈ R.

If one is interested in estimating the quantity Γdn, it seems natural to
plug in the sample covariances Ĉ(i− j) and Γ̂dn(i, j) = Ĉm

1
(i,j)(m2(i, j)) in
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Γdn and to use

Γ̂dn =

(
Ĉ(i− j)

i, j = 1, . . . , n

)
=

(
Γ̂dn(i, j)

i, j = 1, . . . , dn

)
.

But unfortunately this estimator is not a consistent estimator for Γdn in the
sense that the operator norm of Γ̂dn − Γdn does not converge to zero. This
was shown by Wu and Pourahmadi (2009) and to dissolve this problem in the
univariate case, they proposed a banded estimator of the sample covariance
matrix to achieve consistency. This has been generalized by McMurry and
Politis (2010), who considered general flat-top kernels as weight functions.

In Section 2.2, we follow the paper of McMurry and Politis (2010) and
propose a tapered estimator of Γdn and show its consistency in Theorem
2.1 for the case of multivariate processes. Moreover, we state a modified
estimator that is guaranteed to be positive definite for any finite sample
size and show its consistency in Theorem 2.2 and of related quantities in
Corollary 2.1. But prior to that, we state the assumptions that are used
throughout this paper in the following.

2.1. Assumptions.

(A1) {Xt, t ∈ Z} is an R
d-valued strictly stationary time series process with

mean E(Xt) = µ and autocovariances C(h) defined in (2.1) such that∑∞
h=−∞ |h|g|C(h)|1 < ∞ for some g ≥ 0 to be further specified. Let

|A|p = (
∑

i,j |aij |p)1/p for some matrix A = (aij).
(A2) There exists a constant M < ∞ such that for all n ∈ N, all h with

|h| < n and all i, j = 1, . . . , d, we have
∥∥∥∥∥

n∑

t=1

(Xi,t+h −Xi)(Xj,t −Xj)− nCij(h)

∥∥∥∥∥
2

≤ M
√
n.

where ‖A‖p = (E(|A|pp))1/p.
(A3) There exists an n0 ∈ N large enough such that for all n ≥ n0 the

eigenvalues λ1, . . . , λdn of the (dn × dn) covariance matrix Γdn are
bounded uniformly away from zero.

(A4) Define the projection operator Pk(X) = E(X|Fk) − E(X|Fk−1) for
Fk = σ(Xt, t ≤ k) and suppose that for all i = 1, . . . , d, we have∑∞

m=0 ‖P0Xi,m‖q < ∞ and ‖Xi − µi‖q = O( 1√
n
), respectively, for

some q ≥ 2 to be further specified.
(A5) For the sample mean, a CLT holds true. That is, we have

√
n(X − µ)

D−→ N (0,V),

imsart-aos ver. 2014/07/30 file: MLPB_ims-template_black.tex date: September 30, 2014



6 C. JENTSCH AND D. N. POLITIS

where
D−→ denotes weak convergence, N (0,V) is a normal distribution

with zero mean vector and covariance matrix V =
∑∞

h=−∞C(h) with
V positive definite.

(A6) For kernel spectral density estimates f̂pq(ω) as defined in (4.2) in
Section 4, a CLT holds true. That is, for arbitrary frequencies 0 ≤
ω1, . . . , ωs ≤ π, we have that

√
nb

(
f̂pq(ωj)− fpq(ωj) : p, q = 1, . . . , d; j = 1, . . . , s

)

converges to an sd2-dimensional normal distribution for b → 0 and
nb → ∞ such that nb5 = O(1) as n → ∞, where the limiting covariance
matrix is obtained from

nbCov
(
f̂pq(ω), f̂rs(λ)

)
=

(
fpr(ω)fqs(ω)δω,λ + fps(ω)fqr(ω)τ0,π

)

× 1

2π

∫
K2(u)du+ o(1)

and the limiting bias from

E
(
f̂pq(ω)

)
− fpq(ω) = b2f ′′

pq(ω)
1

4π

∫
K(u)u2du+ o

(
b2
)

for all p, q, r, s = 1, . . . , d, where δω,λ = 1 if ω = λ and τ0,π = 1
if ω = λ ∈ {0, π} and zero otherwise, respectively. Therefore, f(ω)
is assumed to be component-wise twice differentiable with Lipschitz-
continuous second derivatives.

Assumption (A1) is quite standard and the uniform convergence of sample
autocovariances in (A2) is satisfied under different types of conditions [cf.
Remark 2.1 below] and appears to be a crucial condition here. The uniform
boundedness of all eigenvalues away from zero in (A3) is implied by a non-
singular spectral density matrix f of (Xt, t ∈ Z). This follows with (2.3) and
the inversion formula from

cTΓdnc = cT
(∫ π

−π
JT
ω f(ω)Jωdω

)
c ≥ 2π|c|22 infω λmin(f(ω))

for all c ∈ R
dn, where Jω = (e−i1ω, . . . , e−inω)⊗ Id and ⊗ denotes the Kro-

necker product. The requirement of condition (A3) fits into the theory for the
univariate autoregressive sieve bootstrap as obtained in Kreiss, Paparoditis
and Politis (2011). Similarly, a non-singular spectral density matrix f implies
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positive definiteness of the long-run variance V = 2πf(0) defined in (A5).
Assumption (A4) is for instance fulfilled, if the underlying process is linear
or α-mixing with summable mixing coefficients by Ibragimov’s inequality
[cf. e.g. Davidson (1994), Theorem 14.2]. To achieve validity of the MLPB
for the sample mean and for kernel spectral density estimates in Section 4,
we have to assume unconditional CLTs in (A5) and (A6), which are satisfied
also under certain mixing conditions [cf. Doukhan (1994), Brillinger (1981)],
linearity [cf. Brockwell and Davis (1991), Hannan (1970)] or weak depen-
dence [cf. Dedecker et al. (2007)]. Note also that the condition nb5 = O(1)
includes the optimal bandwidth choice nb5 → C2, C > 0 for second-order
kernels, which leads to a non-vanishing bias in the limiting normal distribu-
tion.

Remark 2.1. Assumption (A2) is implied by different types of condi-
tions imposed on the underlying process {Xt, t ∈ Z}. We present sufficient
conditions for (A2) under assumed linearity and under mixing- and weak
dependence type conditions. More precisely, (A2) is satisfied if the process
{Xt, t ∈ Z} fulfills one of the following conditions:

(i) Linearity: Suppose the process is linear, i.e. Xt =
∑∞

k=−∞Bket−k, t ∈
Z, where {et, t ∈ Z} is an i.i.d. white noise with finite fourth moments
E(ei,tej,tek,tel,t) < ∞ for all i, j, k, l = 1, . . . , d and the sequence of
(d × d) coefficient matrices {Bk, k ∈ Z} is component-wise absolutely
summable.

(ii) Mixing-type condition: Let

cuma1,...,ak(u1, . . . , uk−1) = cum(Xa1,u1
, . . . , Xak−1,uk−1

, Xak,0)

denote the kth order joint cumulant of Xa1,u1
, . . . , Xak−1,uk−1

, Xak,0 [cf.
Brillinger (1981)] and suppose

∑∞
s,h=−∞ |cumi,j,i,j(s + h, s, h)| < ∞

for all i, j = 1, . . . , d. Note that this is satisfied if {Xt, t ∈ Z} is α-
mixing such that E(|X1|4+δ

2 ) < ∞ and
∑∞

j=1 j
2α(j)δ/(4+δ) < ∞ for

some δ > 0 [cf. Shao (2010), p.221].
(iii) Weak dependence-type condition: Suppose for all i, j = 1, . . . , d, we

have

|Cov((Xi,t+h − µi)(Xj,t − µj), (Xi,t+s+h − µi)(Xj,t+s − µj))| ≤ C · νs,h,

where C < ∞ and (νs,h, s, h ∈ Z) is absolutely summable, that is,∑∞
s,h=−∞ |νs,h| < ∞ [cf. Dedecker et al. (2007)].
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8 C. JENTSCH AND D. N. POLITIS

2.2. Tapered covariance matrix estimation of multiple time series data.
To adopt the technique of McMurry and Politis (2010), let

κ(x) =





1, |x| ≤ 1

0, |x| > cκ

g(|x|), otherwise

(2.5)

be a so-called flat-top taper [cf. Politis (2001)], where |g(x)| < 1 and cκ ≥
1. The l-scaled version of κ(·) is defined by κl(x) = κ

(
x
l

)
for some l >

0. As Politis (2011) argues, it is advantageous to having a smooth taper
κ(x), so the truncated kernel that corresponds to g(x) = 0 for all x is not
recommended. The simplest example of a continuous taper function κ with
cκ > 1 is the trapezoid

κ(x) =





1, |x| ≤ 1

2− |x|, 1 < |x| ≤ 2

0, |x| > 2

(2.6)

which is used in Section 6 for the simulation study; the trapezoidal taper
was first proposed by Politis and Romano (1995) in a spectral estimation
setup. Observe also that the banding parameter l > 0 does not need to be
an integer. The tapered estimator Γ̂κ,l of Γdn is given by

Γ̂κ,l =

(
κl(i− j)Ĉ(i− j)
i, j = 1, . . . , n

)
=

(
Γ̂κ,l(i, j)

i, j = 1, . . . , dn

)
,(2.7)

where Γ̂κ,l(i, j) = Ĉκ,l
m

1
(i,j) (m2(i, j)) and Ĉκ,l

i,j (h) = κl(h)Ĉi,j(h).

The following Theorem 2.1 deals with consistency of the tapered estimator
Γ̂κ,l with respect to operator norm convergence. It extends Theorem 1 in
McMurry and Politis (2010) to the multivariate case and does not rely on
the concept of physical dependence only. The operator norm of a complex-
valued (d× d) matrix A is defined by

ρ(A) = max
x∈Cd:|x|2=1

|Ax|2,

and it is well known that ρ2(A) = λmax(A
HA) = λmax(AAH), where

λmax(B) denotes the largest eigenvalue of a matrix B [cf. Horn and Johnson
(1990), p.296].
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Theorem 2.1. Suppose that assumptions (A1) with g = 0 and (A2) are
satisfied. Then, it holds

‖ρ(Γ̂κ,l − Γdn)‖2 ≤ 4Md2(⌊cκl⌋+ 1)√
n

+ 2

⌊cκl⌋∑

h=0

|h|
n
|C(h)|1

+2
n−1∑

h=l+1

|C(h)|1.(2.8)

The second term on the right-hand side of (2.8) can be represented as

2 ⌊cκl⌋
n

∑⌊cκl⌋
h=0

|h|
⌊cκl⌋ |C(h)|1 and vanishes asymptotically due to the Kronecker-

Lemma for any choice of l and is of order o(l/n). The third one converges
to zero for l = l(n) → ∞ as n → ∞ and the leading first term for l =
o(
√
n). Hence, for 1/l + l/

√
n = o(1) the right-hand side of (2.8) vanishes

asymptotically. However, if |C(h)|1 = 0 for |h| > h0 for some h0 ∈ N, setting
l = h0 fixed suffices. In this case, the expression on the right-hand side of
(2.8) is of faster order O(n−1/2).

As already pointed out by McMurry and Politis (2010), the tapered esti-
mator Γ̂κ,l is not guaranteed to be positive semi-definite or even to be posi-

tive definite for finite sample sizes. However, Γ̂κ,l is at least “asymptotically
positive definite” under assumption (A3) and due to (2.8) if 1/l + l/

√
n =

o(1) holds. In the following, we require a consistent estimator for Γdn which is
positive definite for all finite sample sizes to be able to compute its Cholesky
decomposition for the linear process bootstrap scheme that will be intro-
duced in Section 3 below.

To obtain an estimator of Γdn related to Γ̂κ,l that is assured to be posi-

tive definite for all sample sizes, we construct a modified estimator Γ̂ǫ
κ,l in

the following. Let V̂ = diag(Γ̂dn) be the diagonal matrix of sample vari-
ances and define R̂κ,l = V̂−1/2Γ̂κ,lV̂

−1/2. Now, we consider the spectral

factorization R̂κ,l = SDST , where S is an (dn× dn) orthogonal matrix and
D = diag(r1, . . . , rdn) is the diagonal matrix containing the eigenvalues of
R̂κ,l such that r1 ≥ r2 ≥ · · · ≥ rdn. It is worth noting that this factoriza-

tion always exists due to symmetry of R̂κ,l, but that the eigenvalues can be
positive, zero or even negative. Now, define

Γ̂ǫ
κ,l = V̂1/2R̂ǫ

κ,lV̂
1/2 = V̂1/2SDǫST V̂1/2,(2.9)

where Dǫ = diag(rǫ1, . . . , r
ǫ
dn) and rǫi = max(ri, ǫn

−β). Here, β > 1/2 and

ǫ > 0 are user defined constants that ensure the positive definiteness of Γ̂ǫ
κ,l.

Contrary to the univariate case discussed in McMurry and Politis (2010),
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10 C. JENTSCH AND D. N. POLITIS

we propose to adjust the eigenvalues of the (equivariant) correlation matrix
R̂κ,l instead of Γ̂κ,l, which then comes along without a scaling factor in the
definition of rǫi . Further, note that setting ǫ = 0 leads to a positive semi-

definite estimate if Γ̂κ,l is indefinite, which does not suffice for computing

the Cholesky decomposition, and also that Γ̂ǫ
κ,l generally loses the banded

shape of Γ̂κ,l. Theorem 2.2 below which extends Theorem 3 in McMurry and
Politis (2010), shows that the modification of the eigenvalues does affect the
convergence results obtained in Theorem 2.1 just slightly.

Theorem 2.2. Under the assumptions of Theorem 2.1, it holds

‖ρ(Γ̂ǫ
κ,l − Γdn)‖2 ≤ 8Md2(⌊cκl⌋+ 1)√

n
+ 4

⌊cκl⌋∑

h=0

|h|
n
|C(h)|1 + 4

n−1∑

h=l+1

|C(h)|1,

+ǫ maxi Cii(0)n
−β +O

(
1

n1/2+β

)
.(2.10)

In comparison to the upper bound established in Theorem 2.1, two more
terms appear on the right-hand side of (2.10) which do converge as well
to zero as n tends to infinity. Note that the first three summands that the
right-hand sides of (2.8) and (2.10) have in common, remain the leading
terms if β > 1

2 .
We also need convergence and boundedness in operator norm of quan-

tities related to Γ̂ǫ
κ,l. The required results are summarized in the following

corollary.

Corollary 2.1. Under assumptions (A1) with g = 0, (A2) and (A3),
we have

(i) ρ(Γ̂ǫ
κ,l−Γdn) and ρ((Γ̂ǫ

κ,l)
−1−Γ−1

dn ) are terms of order OP (rl,n), where

rl,n =
l√
n
+

∞∑

h=l+1

|C(h)|1,(2.11)

and rl,n = o(1) if 1/l + l/
√
n = o(1).

(ii) ρ((Γ̂ǫ
κ,l)

1/2−Γ
1/2
dn ) and ρ((Γ̂ǫ

κ,l)
−1/2−Γ

−1/2
dn ) are of order OP (log

2(n)rl,n)

and log2(n)rl,n = o(1) if 1/l + log2(n)l/
√
n = o(1) and (A1) holds for

some g > 0.

(iii) ρ(Γdn), ρ(Γ
−1
dn ), ρ(Γ

−1/2
dn ), ρ(Γ

1/2
dn ) are bounded from above and below.

ρ(Γ̂ǫ
κ,l), ρ((Γ̂ǫ

κ,l)
−1) and ρ((Γ̂ǫ

κ,l)
−1/2), ρ((Γ̂ǫ

κ,l)
1/2) are bounded from

above and below (in probability) if rl,n = o(1) and log2(n)rl,n = o(1),
respectively.
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COVARIANCE MATRIX ESTIMATION AND MULTIVARIATE LPB 11

Remark 2.2. In Section 2.2, we propose to use a global banding param-
eter l that down-weights the autocovariance matrices for increasing lag, i.e.
the entire matrix C(h) is multiplied with the same κl(h) in (2.7). However,
it is possible to use individual banding parameters lpq for each sequence of
entries {Cpq(h), h ∈ Z}, p, q = 1, . . . , d as proposed in Politis (2011).

2.3. Selection of tuning parameters.
To get a tapered estimate Γ̂κ,l of the covariance matrix Γdn some parameters
have to be chosen by the practitioner. These are the flat-top taper κ and the
banding parameter l, which are both responsible for the down-weighting of
the empirical autocovariances Ĉ(h) with increasing lag h.

To select a suitable taper κ from the class of functions (2.5), we have to
select cκ ≥ 1 and the function g which determine the range of the decay of
κ to zero for |x| > 1 and its form over this range, respectively. For some
examples of flat-top tapers, compare Politis (2003b, 2011). However, the se-
lection of the banding parameter l appears to be more crucial than choosing
the tapering function κ among the family of well-behaved flat-top kernels
as discussed in Politis (2011). This is comparable to nonparametric kernel
estimation where usually the bandwidth plays a more important role than
the shape of the kernel.

We focus on providing an empirical rule for banding parameter selection
that has already been used in McMurry and Politis (2010) for the univariate
LPB. They make use of an approach primarily proposed in Politis (2003b)
to estimate the bandwidth in spectral density estimation which has been
generalized to the multivariate case in Politis (2011). In the following, we
adopt this technique based on the correlogram/cross-correlogram [cf. Politis
(2011, Section 6)] for our purposes. Let

R̂jk(h) =
Ĉjk(h)√

Ĉjj(0)Ĉkk(0)
, j, k = 1, . . . , d(2.12)

be the sample (cross-)correlation between the two univariate time series
(Xj,t, t ∈ Z) and (Xk,t, t ∈ Z) at lag h ∈ Z. Now, define q̂jk as the smallest
nonnegative integer such that

|R̂jk(q̂jk + h)| < M0

√
log10(n)/n

for h = 1, . . . ,Kn, where M0 > 0 is a fixed constant, and Kn is a positive,
nondecreasing integer-valued function of n such that Kn = o(log(n)). Note
that the constant M0 and the form of Kn are the practitioner’s choice. As a
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12 C. JENTSCH AND D. N. POLITIS

rule of thumb, we refer to Politis (2003b, 2011) who makes the concrete rec-
ommendation M0 ≃ 2 and Kn = max(5,

√
log10(n)). After having computed

q̂jk for all j, k = 1, . . . , d, we take

l̂ = max
j,k=1,...,d

q̂jk(2.13)

as a data-driven global choice of the banding parameter l. By setting l̂jk =
q̂jk, we get data-driven individual banding parameter choices as discussed
in Remark 2.2. For theoretical justification of this empirical selection of a
global cut-off point as the maximum over individual choices and assumptions
that lead to successful adaptation, we refer to Theorem 6.1 in Politis (2011).

Note also that for positive definite covariance matrix estimation, i.e. for
computing Γ̂ǫ

κ,l, one has to select two more parameters ǫ and β, which have
to be nonnegative and might be set equal to one as suggested in McMurry
and Politis (2010).

3. The multivariate linear process bootstrap procedure. In this
section, we describe the multivariate linear process bootstrap (MLPB) in
detail, discuss some modifications and comment on the special case where
the tapered covariance estimator becomes diagonal.

Step 1. Let X be the (d × n) data matrix consisting of Rd-valued time series
data X1, . . . , Xn of sample size n. Compute the centered observations
Y t = Xt − X, where X = 1

n

∑n
t=1Xt, let Y be the corresponding

(d× n) matrix of centered observations and define Y = vec(Y) to be
the dn-dimensional vectorized version of Y.

Step 2. Compute W = (Γ̂ǫ
κ,l)

−1/2Y , where (Γ̂ǫ
κ,l)

1/2 denotes the lower left tri-

angular matrix L of the Cholesky decomposition Γ̂ǫ
κ,l = LLT .

Step 3. Let Z be the standardized version of W , that is, Zi = Wi−W
σ̂W

, i =

1, . . . , dn, where W = 1
dn

∑dn
t=1Wt and σ̂2

W = 1
dn

∑dn
t=1(Wt −W )2.

Step 4. Generate Z∗ = (Z∗
1 , . . . , Z

∗
dn)

T by i.i.d. resampling from {Z1, . . . , Zdn}.
Step 5. Compute Y ∗ = (Γ̂ǫ

κ,l)
1/2Z∗ and let Y∗ be the matrix that is obtained

from Y ∗ by putting this vector column-wise into an (d×n) matrix and
denote its columns by Y ∗

1, . . . , Y
∗
n.

Regarding the Steps 3 and 4 above and due to the multivariate nature
of the data, it appears to be even more natural to split the dn-dimensional
vector Z in Step 3 above in n sub-vectors, to center and standardize them
and to apply i.i.d. resampling to these vectors to get Z∗. More precisely,
Steps 3 and 4 can be replaced by
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COVARIANCE MATRIX ESTIMATION AND MULTIVARIATE LPB 13

Step 3′. Let Z = (ZT
1 , . . . , Z

T
n )

T be the standardized version of W , that is,

Zi = Σ̂
−1/2
W (W i −W ), where W = (W T

1 , . . . ,W
T
n )

T , W = 1
n

∑n
t=1W t

and Σ̂W = 1
n

∑n
t=1(W t −W )(W t −W )T .

Step 4′. Generate Z∗ = (Z∗
1, . . . , Z

∗
n)

T by i.i.d. resampling from {Z1, . . . , Zn}.
This might preserve more higher order features of the data that are not

captured by Γ̂ǫ
κ,l. However, comparative simulations (not reported in the

paper) indicate that the finite sample performance is only slightly affected
by this sub-vector resampling.

Remark 3.1. If 0 < l < 1
cκ
, the banded covariance matrix estimator

Γ̂κ,l (and Γ̂ǫ
κ,l as well) becomes diagonal. In this case and if Steps 3′ and

Steps 4′ are used, the LPB as described above is equivalent to the classical
i.i.d. bootstrap. Here, note the similarity to the autoregressive sieve bootstrap
which boils down to an i.i.d. bootstrap if the autoregressive order is p = 0.

4. Bootstrap consistency for fixed time series dimension.

4.1. Sample mean.
In this section, we establish validity of the MLPB for the sample mean. The
following theorem generalizes Theorem 5 of McMurry and Politis (2010) to
the multivariate case under somewhat more general conditions.

Theorem 4.1. Under assumptions (A1) for some g > 0, (A2), (A3),
(A4) for q = 4, (A5) and 1/l + log2(n)l/

√
n = o(1), the MLPB is asymp-

totically valid for the sample mean X, that is,

sup
x∈Rd

∣∣∣P
{√

n
(
X − µ

)
≤ x

}
− P ∗

{√
n Y

∗ ≤ x
}∣∣∣ = oP (1)

and V ar∗
(√

n Y
∗)

=
∑∞

h=−∞C(h) + oP (1), where Y
∗
= 1

n

∑n
t=1 Y

∗
t . The

short-hand x ≤ y for x, y ∈ R
d is used to denote xi ≤ yi for all i = 1, . . . , d.

4.2. Kernel spectral density estimates.
Here we prove consistency of the MLPB for kernel spectral density matrix
estimators; this result is novel even in the univariate case. Let In(ω) =
Jn(ω)J

H
n (ω) the periodogram matrix, where

Jn(ω) =
1√
2πn

n∑

t=1

Y te
−itω(4.1)
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14 C. JENTSCH AND D. N. POLITIS

is the discrete Fourier transform (DFT) of Y 1, . . . , Y n, Y t = Xt − X. We
define the estimator

f̂(ω) =
1

n

⌊n

2
⌋∑

k=−⌊n−1

2
⌋

Kb(ω − ωk)In(ωk)(4.2)

for the spectral density matrix f(ω), where ⌊x⌋ is the integer part of x ∈
R, ωk = 2π k

n , k = −⌊n−1
2 ⌋, . . . , ⌊n2 ⌋ are the Fourier frequencies, b is the

bandwidth and K is a symmetric and square integrable kernel function K(·)
that satisfies

∫
K(x)dx = 2π and

∫
K(u)u2du < ∞ and we set Kb(·) =

1
bK( ·b). Let I

∗
n(ω) be the bootstrap analogue of In(ω) based on Y ∗

1, . . . , Y
∗
n

generated from the MLPB scheme and let f̂∗(ω) be the bootstrap analogue
of f̂(ω).

Theorem 4.2. Suppose assumptions (A1) with g ≥ 0 specified below,
(A2), (A3), (A4) for q = 8 and (A6) are satisfied. If b → 0 and nb → ∞
such that nb5 = O(1) as well as 1/l +

√
bl log2(n) +

√
nb log2(n)/lg and

1/k + bk4 +
√
nb log2(n)/kg for some sequence k = k(n), the MLPB is

asymptotically valid for kernel spectral density estimates f̂(ω). That is, for
all s ∈ N and arbitrary frequencies 0 ≤ ω1, . . . , ωs ≤ π (not necessarily
Fourier frequencies), it holds

sup
x∈Rd2s

∣∣∣P
{(√

nb(f̂pq(ωj)− fpq(ωj)) : p, q = 1, . . . , d; j = 1, . . . , s
)
≤ x

}

−P ∗
{(√

nb(f̂∗
pq(ωj)− f̌pq(ωj)) : p, q = 1, . . . , d; j = 1, . . . , s

)
≤ x

}∣∣∣
= oP (1),

where f̌pq(ω) =
1
2π

∑n−1
h=−(n−1) κl(h)Ĉpq(h)e

−ihω and, in particular,

nbCov∗
(
f̂∗
pq(ω), f̂

∗
rs(λ)

)
=

(
fpr(ω)fqs(ω)δω,λ + fps(ω)fqr(ω)τ0,π

)

× 1

2π

∫
K2(u)du+ oP (1),

and E∗(f̂∗
pq(ω))−f̌pq(ω) = b2f ′′

pq(ω)
1
4π

∫
K(u)u2du+pP (b

2), for all p, q, r, s =
1, . . . , d and all ω, λ ∈ [0, π], respectively.

4.3. Other statistics and LPB-of-blocks bootstrap.
For statistics Tn contained in the broad class of functions of generalized
means, Jentsch and Politis (2013) discussed how by using a preliminary
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COVARIANCE MATRIX ESTIMATION AND MULTIVARIATE LPB 15

blocking scheme tailor-made for a specific statistic of interest, the MLPB
can be shown to be consistent. This class of statistics contains estimates Tn

of w(ϑ) with ϑ = E(g(Xt, . . . , Xt+m−1)) such that

Tn = w

{
1

n−m+ 1

n−m+1∑

t=1

g(Xt, . . . , Xt+m−1)

}
,

for some sufficiently smooth functions g : Rd×m → R
k, w : Rk → R and fixed

m ∈ N. They propose to block the data first according to the known function
g and to apply then the (M)LPB to the blocked data. More precisely, the
multivariate LPB-of-blocks bootstrap is as follows:

Step 1. Define X̃t := g(Xt, . . . , Xt+m−1) and let X̃1, . . . , X̃n−m+1 be the set
of blocked data.

Step 2. Apply the MLPB scheme of Section 3 to the k-dimensional blocked
data X̃1, . . . , X̃n−m+1 to get bootstrap observations X̃

∗
1, . . . , X̃

∗
n−m+1.

Step 3. Compute T ∗
n = w{(n−m+ 1)−1

∑n−m+1
t=1 X̃

∗
t }.

Step 4. Repeat Steps 2 and 3 B-times, where B is large, and approximate the
unknown distribution of

√
n{Tn −w(ϑ)} by the empirical distribution

of
√
n{T ∗

n,1 − Tn}, . . . ,
√
n{T ∗

n,B − Tn}.
The validity of the multivariate LPB-of-blocks bootstrap for some statistic

Tn can be verified by checking the assumptions of Theorem 4.1 for the sample
mean of the new process {X̃t, t ∈ Z}.

5. Asymptotic results for increasing time series dimension. In
this section, we consider the case when the time series dimension d is allowed
to increase with the sample size n, i.e. d = d(n) → ∞ as n → ∞. In
particular, we show consistency of tapered covariance matrix estimates and
derive rates that allow for an asymptotic validity result of the MLPB for
the sample mean in this case.

The recent paper by Cai, Ren and Zhou (2013) gives a thorough discussion
of the estimation of Toeplitz covariance matrices for univariate time series.
In their setup, that covers also the possibility of having multiple datasets
from the same data generating process, Cai, Ren and Zhou (2013) estab-
lish the optimal rates of convergence using the two simple flat-top kernels
discussed in Section 2.2, namely the truncated (i.e., case of pure banding—
no tapering), and the trapezoid taper. When the strength of dependence
is quantified via a smoothness condition on the spectral density, they show
that the trapezoid is superior to the truncated taper, thus confirming the
intuitive recommendations of Politis (2011). The asymptotic theory of Cai,

imsart-aos ver. 2014/07/30 file: MLPB_ims-template_black.tex date: September 30, 2014



16 C. JENTSCH AND D. N. POLITIS

Ren and Zhou (2013) allows for increasing number of time series and in-
creasing sample size, but their framework does not contain the multivariate
time series case neither for fixed nor for increasing time series dimension,
which will be discussed in this section.

Note that Theorem 1 in McMurry and Politis (2010) for the univariate
case, as well as our Theorem 2.1 for the multivariate case of fixed time series
dimension, give upper bounds that are quite sharp, coming within a log-term
to the (Gaussian) optimal rate found in Theorem 2 of Cai, Ren and Zhou
(2013).

Instead of assumptions (A1)–(A5) that have been introduced in Section
2.1 and used in Theorem 4.1 to obtain bootstrap consistency for the sam-
ple mean for fixed dimension d, we impose the following conditions on the

sequence of time series process ({X(n)
t , t ∈ Z})n∈N of now increasing dimen-

sion.

5.1. Assumptions.

(A1′) ({Xt = (X1,t, . . . , Xd(n),t)
T , t ∈ Z})n∈N is a sequence of Rd(n)-valued

strictly stationary time series processes with mean vectors E(Xt) =
µ = (µ1, . . . , µd(n)) and autocovariances C(h) = (Cij(h))i,j=1,...,d(n)

defined as in (2.1). Here, (d(n))n∈N is a non-decreasing sequence of
positive integers such that d(n) → ∞ as n → ∞ and, further, suppose

∞∑

h=−∞

{
sup
n∈N

sup
i,j=1,...,d(n)

|h|g|Cij(h)|
}

< ∞

for some g ≥ 0 to be further specified.
(A2′) There exists a constant M ′ < ∞ such that for all n ∈ N and all h with

|h| < n, we have

sup
i,j=1,...,d(n)

∥∥∥∥∥

n∑

t=1

(Xi,t+h −X i)(Xj,t −Xj)− nCij(h)

∥∥∥∥∥
2

≤ M ′√n.

(A3′) There exists an n0 ∈ N large enough such that for all n ≥ n0 and all
d ≥ d0 = d(n0) the eigenvalues λ1, . . . , λdn of the (dn× dn) covariance
matrix Γdn are bounded uniformly away from zero and from above.

(A4′) Define the sequence of projection operators P
(n)
k (X) = E(X|F (n)

k ) −
E(X|F (n)

k−1) for F
(n)
k = σ(Xt, t ≤ k) and suppose

∞∑

m=0

{
sup
n∈N

sup
i=1,...,d(n)

‖P (n)
0 Xi,m‖4

}
< ∞ and sup

n∈N
sup

i=1,...,d(n)
‖X i − µi‖4 = O(n−1/2).
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(A5′) For the sample mean, a Cramér-Wold-type CLT holds true. That is,
for any real-valued sequence b = b(d(n)) of d(n)-dimensional vectors
with 0 < M1 ≤ |b(d(n))|22 ≤ M2 < ∞ for all n ∈ N and v2 = v2d(n) =

V ar(
√
n
(
bT

(
X − µ

))
), we have

√
n
(
bT

(
X − µ

))
/v

D−→ N (0, 1).

The assumptions (A1′)–(A4′) are uniform analogues of (A1)–(A4), which
are required here to tackle the increasing time series dimension d. In partic-
ular, (A1′) implies

∞∑

h=−∞
|C(h)|1 = O(d2).(5.1)

Observe also that the autocovariances Cij(h) are assumed to decay with
increasing lag h, i.e. in time direction, but they are not assumed to de-
cay with increasing |i − j|, i.e., with respect to increasing time series di-
mension. Therefore, we have to make use of square summable sequences in
(A5′) to get a CLT result. This techniques has been used e.g. by Lewis and
Reinsel (1985) and Goncalves and Kilian (2007) to establish central limit
results for the estimation of an increasing number of autoregressive coef-
ficients. A simple sufficient condition for (A5′) is e.g. the case of ({Xt =
(X1,t, . . . , Xd(n),t)

T , t ∈ Z})n∈N being a sequence of i.i.d. Gaussian processes

with eigenvalues of E(XtX
T
t ) bounded uniformly from above and away from

zero.

5.2. Operator norm convergence for increasing time series dimension.
The following theorem generalizes the results of Theorems 2.1 and 2.2 and of
Corollary 2.1 to the case where d = d(n) is allowed to increase with the sam-
ple size. In contrast to the case of a stationary spatial process on the plane
Z
2 (where a data matrix is observed that grows in both directions asymptot-

ically as in our setting), we do not assume that the autocovariance matrix
decays in all directions. Therefore, to be able to establish a meaningful the-
ory, we have to replace (A1)–(A5) by the uniform analogues (A1′)–(A5′) and
due to (5.1), an additional factor d2 turns up in the convergence rate and
has to be taken into account.

Theorem 5.1. Under assumptions (A1′) with g ≥ 0 specified below,
(A2′) and (A3′), we have
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18 C. JENTSCH AND D. N. POLITIS

(i) ρ(Γ̂ǫ
κ,l − Γdn) and ρ((Γ̂ǫ

κ,l)
−1 − Γ−1

dn ) are terms of order OP (d
2r̃l,n),

where

r̃l,n =
l√
n
+

∞∑

h=l+1

{
sup
n∈N

sup
i,j=1,...,d(n)

|Cij(h)|
}
,(5.2)

and d2r̃l,n = o(1) if 1/l + d2l/
√
n+ d2/lg = o(1).

(ii) ρ((Γ̂ǫ
κ,l)

1/2 − Γ
1/2
dn ) and ρ((Γ̂ǫ

κ,l)
−1/2 − Γ

−1/2
dn ) are both terms of order

OP (log
2(dn)d2r̃l,n) and log2(dn)d2r̃l,n = o(1) if 1/l+log2(dn)d2l/

√
n+

log2(dn)d2/lg = o(1).

(iii) ρ(Γdn), ρ(Γ−1
dn ), ρ(Γ

−1/2
dn ) and ρ(Γ

1/2
dn ) are bounded from above and

below. ρ(Γ̂ǫ
κ,l) and ρ((Γ̂ǫ

κ,l)
−1) as well as ρ((Γ̂ǫ

κ,l)
−1/2) and ρ((Γ̂ǫ

κ,l)
1/2)

are bounded from above and below in probability if d2r̃l,n = o(1) and
log2(dn)d2r̃l,n = o(1), respectively.

The required rates for the banding parameter l and the time series di-
mension d to get operator norm consistency ρ(Γ̂ǫ

κ,l − Γdn) = oP (1) can be

interpreted nicely. If g is chosen to be large enough, d2l/
√
n becomes the

leading term and there is a trade-off between capturing more dependence of
the time series in time direction (large l) and growing dimension of the time
series in cross-sectional direction (large d).

5.3. Bootstrap validity for increasing time series dimension.
The subsequent theorem is a Cramér-Wold-type generalization of Theorem
4.1 to the case where d = d(n) is allowed to grow at an appropriate rate
with the sample size. To tackle the increasing time series dimension and to
prove such a CLT result, we have to make use of appropriate sequences of
square summable vectors b = b(d(n)) as described in (A5′) above.

Theorem 5.2. Under assumptions (A1′) with g ≥ 0 specified below,
(A2′), (A3′), (A4′) for q = 4, (A5′) as well as 1/l + log2(dn)d2l/

√
n +

log2(dn)d2/lg = o(1) and 1/k + d5k4/n + log2(dn)d2/kg = o(1) for some
sequence k = k(n), the MLPB is asymptotically valid for the sample mean
X. That is, for any real-valued sequence b = b(d(n)) of d(n)-dimensional
vectors with 0 < M1 ≤ |b(d(n))|22 ≤ M2 < ∞ for all n ∈ N and v̂2 = v̂2d(n) =

V ar∗(
√
n(bTY

∗
)), we have

sup
x∈R

∣∣∣P
{√

n
(
bT

(
X − µ

))
/v ≤ x

}
− P ∗

{√
n
(
bTY

∗)
/v̂ ≤ x

}∣∣∣ = oP (1)

and |v2 − v̂2| = oP (1).
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5.4. Reduction of computation time.
In practice, the computational requirements can become very demanding
for large d and n. In this case, we suggest to split the data vector X in
few subsamples X(1), . . . , X(S), say, and to apply the MLPB scheme to each
subsample separately. This operation can be justified by the fact that de-
pendence structure is distorted only few times. Precisely, we suggest the
following procedure:

Step 1. For small S ∈ N, define nsub = ⌈n/S⌉ and Nsub = dnsub such that
SNsub ≥ N and let X(i) = (XT

(i−1)nsub+1, . . . , X
T
insub

)T , i = 1, . . . , S,

where X(S) is filled up with zeros if SNsub > N .
Step 2. Apply the MLPB bootstrap scheme as described in Section 3 sepa-

rately to the subsamples X(1), . . . , X(S) to get Y (1)∗, . . . , Y (S)∗.
Step 3. Put X(1)∗, . . . , X(S)∗ end-to-end together and discard the last SNsub−

N values to get Y ∗ and Y∗.

Here, computationally demanding operations as eigenvalue decomposi-
tion, Cholesky decomposition and matrix inversion have to be executed only
for lower-dimensional matrices, such that the algorithm above is capable
to reduce the computation time considerably. Further, to regain efficiency,
we propose to use the pooled sample mean X for centering and Γ̂ǫ

κ,l,Nsub

for whitening and re-introducing correlation structure for all subsamples in
Step 2. Here, Γ̂ǫ

κ,l,Nsub
is obtained analogously to (2.9), but based on the

upper-left (Nsub ×Nsub) sub-matrix of Γ̂κ,l.

6. Simulations. In this section we compare systematically the perfor-
mance of the multivariate linear process bootstrap (MLPB) to that of the
vector-autoregressive sieve bootstrap (ARsieve), the moving block bootstrap
(MBB) and the tapered block bootstrap (TBB) by means of simulation. In
order to make such a comparison, we have chosen a statistic for which all
methods lead to asymptotically correct approximations. Being interested in
the distribution of the sample mean, we compare the aforementioned boot-
strap methods by plotting

a) root mean squared errors (RMSE) for estimating the variances of√
n(X − µ)

b) coverage rates (CR) of 95% bootstrap confidence intervals for the com-
ponents of µ

for two data generating processes (DGPs) and three sample sizes in two
different setups. First, in Section 6.1, we compare the performance of all
aforementioned bootstraps with respect to (wrt) tuning parameter choice.
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These are the banding parameter l (MLPB), the autoregressive order p (AR-
sieve) and the block length s (MBB, TBB). Furthermore, we report RMSE
and CR for data-adaptively chosen tuning parameters to investigate how
accurate automatic selection procedures can work in practice. Second, in
Section 6.2, we investigate the effect of the time series dimension d on the
performance of the different bootstrap approaches.

For each case, we have generated T = 500 time series and B = 500
bootstrap replications have been used in each step. For a), the exact covari-
ance matrix of

√
n(X −µ) is estimated by 20, 000 Monte Carlo replications.

Further, we use the trapezoidal kernel defined in (2.6) to taper the sample
covariance matrix for the MLPB and the blocks for the TBB. To correct
the covariance matrix estimator Γ̂κ,l to be positive definite, if necessary,

we set ǫ = 1 and β = 1 to get Γ̂ǫ
κ,l. This choice has already been used by

McMurry and Politis (2010) and simulation results (not reported in this pa-
per) indicate that the performance of the MLPB reacts only slightly to this
choice. We have used the sub-vector resampling scheme, i.e. Steps 3’ and 4’
described in Section 3.

Some additional simulation results and a real data application of the
MLPB to the weighted mean of an increasing number of German stock
prices taken from the DAX index can be found in a supplementary mate-
rial to this paper [Jentsch and Politis (2014)]. The R code is available at
http://www.math.ucsd.edu/∼politis/SOFT/function_MLPB.R.

6.1. Bootstrap performance: the effect of tuning parameter choice. We
consider realizations X1, . . . , Xn of length n = 100, 200, 500 from two bivari-
ate (d = 2) DGPs. Precisely, we study a first order vector moving average
process

VMA(1) model Xt = Aet−1 + et

and a first order vector autoregressive process

VAR(1) model Xt = AXt−1 + et,

where et ∼ N (0,Σ) is a normally distributed i.i.d. white noise process and

Σ =

(
1 0.5
0.5 1

)
and A =

(
0.9 −0.4
0 0.5

)

have been used in all cases. It is worth noting, that (asymptotically) all
bootstrap procedures under consideration yield valid approximations for
both models above. For the VMA(1) model, MLPB is valid for all (suffi-
ciently small) choices of banding parameters l ≥ 1, but ARsieve is valid
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only asymptotically for p = p(n) tending to infinity at an appropriate rate
with increasing sample size n. This relationship of MLPB and ARsieve is
reversed for the VAR(1) model. For the MBB and the TBB, the block length
has to increase with the sample size for both DGPs.

Additionally to the results for tuning parameters l, p, s ∈ {1, . . . , 20}, we
show also RMSE and CR for tuning parameters chosen by automatic se-
lection procedures in Figures 1 and 2. For the MLPB, we report results
for data-adaptively chosen global and individual banding parameters as dis-
cussed in Section 2.3. For the ARsieve, the order of the VAR model fitted
to the data has been chosen by using the R routine V AR() contained in the
package vars with lag.max = sqrt(n/log(n)). The block length is chosen by
using the R routine b.star() contained in the package np. In Figure 1 and
2, we report only the results corresponding to the first component of the
sample mean as those for the second component lead qualitatively to the
same results. We show them in the supplementary material, that contains
also corresponding simulation results for a normal white noise DGP.

For data generated by the VMA(1) model, Figure 1 shows that the MLPB
outperforms AR sieve, MBB and TBB for adequate tuning parameter choice,
that is, l ≈ 1. In this case, the MLPB behaves generally superior wrt RMSE
and CR to the other bootstrap methods for all tuning parameter choices of
p and s. This was not unexpected since, by design, the MLPB can approx-
imate very efficiently the covariance structure of moving average processes.
Nevertheless, due to the fact that all proposed bootstrap schemes are valid
at least asymptotically, ARsieve gets rid of its bias with increasing order p,
but at the expense of increasing variability and consequently also increasing
RMSE. MLPB with data-adaptively chosen banding parameter performs
quite well, where the individual choice tends to perform superior to the
global choice in most cases. In comparison, MBB and TBB seem to perform
quite well for adequate block length, but they lose in terms of RMSE as well
as CR performance if the block length is chosen automatically.

The data from the VAR(1) model is highly persistent due to the coeffi-
cient A11 = 0.9 near to unity. This leads to autocovariances that are rather
slowly decreasing with increasing lag and, consequently, to large variances
of

√
n(X − µ). Figure 2 shows that ARsieve outperforms MLPB, MBB and

TBB wrt to CR for small AR orders p ≈ 1. This was to be expected since
the underlying VAR(1) model is captured well by ARsieve even with fi-
nite sample size. But the picture appears to be different wrt RMSE. Here,
MLPB may perform superior for adequate tuning parameter choice, but
this effect can be explained by the very small variance that compensates its
large bias in comparison to the AR sieve [not reported here] leading to a
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smaller RMSE. This phenomenon is also illustrated by the poor performance
of MLPB wrt to CR for small choices of l. However, more surprising is the
rather good performance of the MLPB if the banding parameter is chosen
data-adaptively, where the MLPB appears to be comparable to the ARsieve
in terms of RMSE and at least close wrt CR. Further, as observed already
for the VMA(1) model in Figure 1, the individual banding parameter choice
generally tends to outperform the global choice here again. Similarly, it can
be seen here that the performance of ARsieve worsens with increasing p at
the expense of increasing variability. The block bootstraps MBB and TBB
appear to be clearly inferior to MLPB and AR sieve particularly wrt CR,
but also wrt to RMSE if tuning parameters are chosen automatically.

6.2. Bootstrap performance: the effect of larger time series dimension.
We consider d-dimensional realizations X1, . . . , Xn with n = 100, 200, 500
from two DGPs of several dimensions. Precisely, we study first order vector
moving average processes

VMAd(1) model Xt = Aet−1 + et

and first order vector autoregressive processes

VARd(1) model Xt = AXt−1 + et

of dimension d ∈ {2, . . . , 10}, where et ∼ N (0,Σd) is a d-dimensional nor-
mally distributed i.i.d. white noise process and Σ = (Σij) and A = (Aij) are
such that

Σij =





1, i = j

0.5, |i− j| = 1

0, otherwise

and Aij =





0.9, i = j, (i+ 1)/2 ∈ N

0.5, i = j, i/2 ∈ N

−0.4, i+ 1 = j

0, otherwise

.

Observe that the VMA(1) and VAR(1) models considered in Section 6.1 are
included in this setup for d = 2.

In Figures 3 and 4, we compare the performance of MLPB, ARsieve,
MBB and TBB for the DGPs above using RMSE and CR averaged over all
d time series coordinates. Precisely, we compute RMSE individually for the
estimates of V ar(

√
n(X i − µi)), i = 1, . . . , d and plot the averages in the

upper half of Figures 3 and 4. Similarly, we plot averages of individually
calculated CR of bootstrap confidence intervals for µi, i = 1, . . . , d in the
lower halfs. All tuning parameters are chosen data-based and optimal as
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described in Section 6.1 and to reduce computation time, the less demanding
algorithm as described in Section 5.4 with S = dn/500 is used.

For the VMA(1) DGPs in Figure 3, the MLPB with individual banding
parameter choice outperforms the other approaches essentially for all time
series dimension under consideration wrt to averaged RMSE and CR. In
particular, larger time series dimensions do not seem to have a large effect
on the performance of all bootstraps for the VMA(1) DGPs with the only
exception of the MLPB with global banding parameter choice. In particular,
the latter is clearly inferior in comparison to the MLPB with individually
chosen banding parameter, which might be explained by sparsity of the
covariance matrix Γdn.

In Figure 4, for the VAR(1) DGPs, the picture is different to the VMA(1)
case above. The influence of larger time series dimension on RMSE (and
less pronounced for CR) performance is much more pronounced and clearly
visible. In particular, the RMSE blows up with increasing dimension d for
all four bootstrap methods, which is due to the also increasing variance of
the process. Note that the zig-zag shape of the RMSE curves is due to the
back and forth switching from 0.9 to 0.5 on the diagonal of A. As already ob-
served for the VMA(1) DGPs, the MLPB with individual banding parameter
choice again performs best over essentially all time series dimensions wrt to
average RMSE and average CR. In particular, MLPB with individual choice
is superior to the global choice. Here, the good performance of the MLPB
is somewhat surprising as the VAR(1) DGPs have rather slowly decreas-
ing autocovariance structure, where we expected an ARsieve to be more
suitable.
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SUPPLEMENTARY MATERIAL

Additional proofs, simulations and a real data example

(doi: 10.1214/00-AOASXXXXSUPP; .pdf). In the supplementary material
we provide proofs, additional supporting simulations and an application of
the MLPB to German stock index data.
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The supplementary material to this paper is also abvailable online at
http://www.math.ucsd.edu/~politis/PAPER/MLPBsupplement.pdf
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Fig 1. RMSE for estimating V ar(
√
n(X1 −µ1)) and CR of bootstrap confidence intervals

for µ1 by MLPB (solid), ARsieve (dashed), MBB (dotted) and TBB (dash-dotted) are re-
ported vs. the respective tuning parameters l, p, s ∈ {1, . . . , 20} for the VMA(1) model with
sample size n ∈ {100, 200, 500}. Line segments indicate results for data-adaptively cho-
sen tuning parameters. MLPB with individual (grey) and global (black) banding parameter
choice are reported.
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Fig 2. As in Figure 1, but with VAR(1) model.
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Fig 3. Average RMSE for estimating V ar(
√
n(Xi − µi)), i = 1, . . . , d and average CR

of bootstrap confidence intervals for µi, i = 1, . . . , d, by MLPB (solid), ARsieve (dashed),
MBB (dotted) and TBB (dash-dotted) with data-based optimal tuning parameter choices
are reported vs. the dimension d ∈ {2, . . . , 10} for the VMAd(1) model with sample size
n ∈ {100, 200, 500}.
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Fig 4. As in Figure 3, but with VARd(1) model.
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