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Abstract

The linear process bootstrap (LPB) for univariate time series has been introduced by McMurry
and Politis (2010) and it is called LPB because it generates linear processes in the bootstrap domain.
However, it does not assume that the data are themselves a sample from a linear process. They use
tapered and banded estimates for the autocovariance matrix of the whole data stretch [cf. Wu and
Pourahmadi (2009)] and i.i.d. resampling of appropriately standardized residuals. Under a physical
dependence assumption [cf. Wu (2005)], they show validity of the LPB for the sample mean.

In this paper, we generalize their approach to the case of multivariate time series and show its
validity for the sample mean under different assumptions (mixing, weak dependence, linearity). To
complement the theory of McMurry and Politis (2010), we show that the multivariate LPB works
also for spectral density estimation, but that it fails generally for sample autocovariances. Even in
the univariate case and under assumed linearity, this is still the case. However, we show consistency
of the LPB for univariate, causal and invertible linear processes for higher order statistics as e.g.
autocovariances and for autocorrelations in the univariate case under linearity only. Moreover, the
validity of the LPB for the multivariate sample mean can be used in order to correct the invalidity
of the univariate LPB for higher order statistics as e.g. autocovariances in the general case. For this
purpose, an LPB-of-blocks bootstrap scheme is proposed.
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1 Introduction

For dependent time series data, resampling methods and bootstrap techniques in particular have been
studied intensively over the last decades. To complement the existing theory, McMurry and Politis
(2010) proposed the so-called linear process bootstrap (LPB) for univariate stationary processes and
showed its validity for the sample mean actually without assuming linearity of the underlying process.

In comparison to other popular bootstrap procedures in time series analysis as e.g. the AR sieve boot-
strap or block bootstrap techniques, it is possible to resample processes with an abruptly dying-out
covariance structure as MA processes. In principle, it is of course possible to estimate the parameters
of an underlying moving average process by using numerical optimization or the innovations algorithm,
but these procedures are much more involved than estimating for example AR coefficients, which can
be obtained by stable estimation procedures. Here, the benefit of the LPB is that MA processes can
be resampled without estimating their coefficients explicitly.
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For an overview of existing bootstrap methods compare the monograph of Lahiri (2003) or the very
recent review paper by Kreiss and Paparoditis (2011).

The main idea of the LPB is to consider the data sample of length n as one n-dimensional vec-
tor and to estimate appropriately the entire covariance structure of this vector. This is executed by
using banded or tapered covariance matrix estimators as proposed by Wu and Pourahmadi (2009) and
employed by McMurry and Politis (2010). In order, the resulting covariance matrix is used to whiten
the data by pre-multiplying the original (centered) data with its inverse Cholesky matrix, where a
modification of its eigenvalues ensures positive definiteness if necessary. After suitable centering and
standardizing, the resulting vector is treated as i.i.d. with zero mean and unit variance. Finally, i.i.d.
resampling from this vector and pre-multiplying the corresponding bootstrap vector of residuals with
the Cholesky matrix itself results in a bootstrap sample that has (approximately) the same covariance
structure as the original time series.

The limiting variance of the sample mean is known to depend exclusively on the covariance structure
of the underlying process and, heuristically, the LPB is valid here thanks to its capability to capture
(asymptotically) its entire covariance structure. However, the LPB is generally not able to mimic the
complete dependence structure of the underlying process which is potentially a lot more involved and
may contain features of higher order than the second as well. Therefore, the LPB as introduced in
McMurry and Politis (2010) is typically not consistent for statistics that depend asymptotically on
higher order characteristics of the underlying process or even on its exact distribution. Nevertheless,
there are other important statistics than (smooth functions of) the sample mean around that depend
on autocovariances of the process only such that the LPB might be valid in these situations as well.
For example, this property is well known for kernel spectral density (matrix) estimates in general and
for sample autocorrelations under linearity.

In Section 2 we state and describe the multivariate generalization of the LPB and in Section 3 we
discuss our established results concerned with its validity for sample mean, kernel spectral density
estimates and sample autocovariances and autocorrelations under general assumptions and in some
important special cases.

2 The bootstrap algorithm

Step 1. Let X be the (d×n) data matrix consisting of R
d-valued time series data X1, . . . , Xn of sample

size n. Compute the centered observations Y t = Xt − X, where X = 1
n

∑n
t=1 Xt, let Y be

the corresponding (d × n) matrix of centered observations and define Y = vec(Y) to be the
dn-dimensional vectorized version of Y.

Step 2. Compute W = (Γ̂ǫ
κ,l)

−1/2Y , where (Γ̂ǫ
κ,l)

1/2 denotes the lower left triangular matrix L of the

Cholesky decomposition Γ̂ǫ
κ,l = LLT . Here, Γ̂ǫ

κ,l is a suitable tapered estimator for the (dn×dn)
covariance matrix Γdn of Y that is ensured to be positive definite.

Step 3. Let Z be the standardized version of W , that is, Zi = Wi−W
σ̂W

, i = 1, . . . , dn, where W =
1

dn

∑dn
t=1 Wt and σ̂2

W = 1
dn

∑dn
t=1(Wt − W )2.

Step 4. Generate Z∗ = (Z∗
1 , . . . , Z∗

dn)T by i.i.d. resampling from {Z1, . . . , Zdn}.

Step 5. Compute Y ∗ = (Γ̂ǫ
κ,l)

1/2Z∗ and let Y∗ be the matrix that is obtained from Y ∗ by putting this
vector column-wise into an (d × n) matrix and denote its columns by Y ∗

1, . . . , Y
∗
n.



Jentsch and Politis – The multivariate linear process bootstrap 3

3 Results

Suppose the data generating process {Xt, t ∈ Z} is an R
d-valued stationary time series with mean

vector µ and autocovariance matrices C(h), h ∈ Z, which are assumed to be componentwise absolutely
summable, i.e.

∑∞
h=−∞ |Cij(h)| < ∞ for all i, j. Moreover, we assume that there exists a constant

M < ∞ independent of h such that

‖
n∑

t=1

(Xt+h − X)(Xt − X)T − nC(h)‖2 ≤ M
√

n, (1)

where ‖A‖2 =
√

E(|A|22) and | · |2 denotes the Euclidean matrix norm. Additionally, we have to as-
sume eigenvalues of Γdn uniformly bounded away from zero for sufficiently large n to ensure positive
definiteness.

In this paper, by proving validity of the multivariate LPB as introduced in Section 2 for the bootstrap
sample mean vector Y

∗
= 1

n

∑n
t=1 Y ∗

t under suitable assumptions, we generalize the result obtained
by McMurry and Politis (2010) to the multivariate case. Note that their result for the univariate case
is established under a physical dependence condition [cf. Wu (2005)], which is sufficient for (1).

To complement the results of McMurry and Politis (2010), we consider also bootstrap versions of
kernel estimates for the spectral density matrix, i.e.

f̂∗(ω) =
1

n

⌊n

2
⌋∑

j=−⌊n−1

2
⌋

Kh(ω − ωj)I
∗
n(ωj), (2)

where I∗n(ω) = J∗
n(ω)J∗

n(ω)
T

is the periodogram matrix, J∗
n(ω) = 1√

2πn

∑n
t=1 Y ∗

t e
−itω is the multi-

variate discrete Fourier transform (DFT) based on Y ∗
1, . . . , Y

∗
n, K is a kernel with

∫
K(x)dx = 2π, h

is a bandwidth and Kh(·) = 1
hK( ·

h). Under suitable assumptions, we prove validity of the MLPB for
kernel spectral density estimates.

In the following, we discuss our obtained results for sample autocovariances

Ĉ(h) =
1

n

min(n,n−h)∑

t=max(1,1−h)

(Xt+h − X)(Xt − X)T (3)

in detail. As discussed in Kreiss and Paparoditis (2011), the question whether a certain bootstrap pro-
cedure is valid for some statistic Tn depends essentially on the capability of the bootstrap to mimic all
characteristics of the underlying distribution of {Xt, t ∈ Z} that crop up in the limiting distribution of
Tn. In general, the LPB is designed to mimic the entire covariance structure of {Xt, t ∈ Z} asymptot-
ically, but it does not capture any higher order structure of the underlying process. Being concerned
with autocovariances, it is well known, that the limiting distribution of sample autocovariances (3)
does depend on fourth order joint cumulants of {Xt, t ∈ Z}. This causes the LPB to fail for sample
autocovariances (and other statistics that depend on more than first and second order structure of
the underlying process) in general. Compare for instance the discussion of the multivariate case in
Jentsch and Kreiss (2010).

Even in the univariate case d = 1 and under the additional assumption of linearity, i.e. it holds
Xt =

∑∞
ν=−∞ bνet−ν , t ∈ Z with absolutely summable sequence {bj, j ∈ Z} and i.i.d. white noise

{et, t ∈ Z} with E(e2
t ) = σ2

e ∈ (0,∞) and E(e4
t ) = ησ4

e ∈ (0,∞), the limiting covariances of sample
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autocovariances depend on fourth order structure of the process. Precisely, it holds

nCov(Ĉ(h), Ĉ(k)) −→
n→∞

C(h)C(k)(η − 3) +

∞∑

r=−∞
(C(r)C(r + k − h) + C(r + k)C(r − h)) .

The LPB captures the second part on the right-hand side above correctly, but fails to mimic the first
term in general. Consequently, the LPB is not valid asymptotically for sample autocovariances even
in the univariate case and under assumed linearity.

However, we show that consistency of the LPB holds for univariate, causal and invertible linear
processes for higher order statistics as e.g. autocovariances. At first sight, this may seem to be sur-
prising, because contrary to fully nonparametric bootstrap methods as e.g. the block bootstrap, the
LPB mimics by construction only the second order structure of the DGP and not its entire dependence
structure. But by taking a closer look and particularly in comparison to the prominent autoregressive
sieve bootstrap [cf. the discussion in Kreiss, Paparoditis and Politis (2011)], which is strongly related
to the LPB approach, this result fits in the existing literature. Heuristically, the LPB remains valid
in this case due to a triangular shape of the matrix A that (approximately) transforms the vector of
residuals (e1, . . . , en)′ by pre-multiplication to the vector of observations (X1, . . . , Xn)′. Thanks to the
triangular shape of A and under invertibility, this matrix fits properly together asymptotically with
the Cholesky matrix that is involved in the bootstrap algorithm. Eventually, this implies consistency
for the LPB in this case. Moreover, we obtain validity of the LPB for autocorrelations under linearity
only, because their limiting distributions then depend on second order structure exclusively.

Finally, the validity of the LPB for the multivariate sample mean can be used in order to correct
the invalidity of the univariate LPB for higher order statistics as e.g. autocovariances in the general
case. For this purpose, an LPB-of-blocks bootstrap scheme is proposed that resamples directly vec-
tors of lagged products Yt+hYt = (Xt+h −X)(Xt −X) to capture their covariance structure properly
instead of the covariance structure of the process {Xt, t ∈ Z} itself. For instance, if the bivariate
process U t = (Yt+hYt, Y

2
t ) satisfies the assumptions imposed at the beginning of this section, we show

consistency for sample autocovariances in general and without assuming linearity at all by standard
application of g(x, y) = x/y and the ∆-method.
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