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A Additional Theoretical Detail

This appendix provides additional detail for our theoretical results to supplement what we

show in the paper. We also provide some complementing additional results.

A.1 Detail for Theorem 2.1

In this section, we provide additional mathematical details for Theorem 2.1. To do so, we

make use of some additional notation. Define the (Kp×K) matrices Cj = (Φ′j−1, . . . ,Φ
′
j−p)

′

and the ((Kp+ 1)× (Kp+ 1)) matrix ΓZZ = E(T−1ZZ ′), which we can write as

ΓZZ =

(
1 (1p ⊗ µ)′

(1p ⊗ µ) (1p ⊗ µ)(1p ⊗ µ)′ +
∑∞

j=1 CjΣuC
′
j

)
, (A.1)

in which 1p is a (p× 1) vector of ones. Further, for a, b, c ∈ Z, we define the (K2 ×K) and

(Kr ×K) covariance matrices

κa,b = Cov
(
vec(utu

′
t−a), ut−b

)
= E

(
vec(utu

′
t−a)u

′
t−b
)
,

λa,b = Cov (vec(ut−am
′
t), ut−b) = E

(
vec(ut−am

′
t)u
′
t−b
)
,

and the (K2 ×K2), (Kr ×K2) and (Kr ×Kr) covariance matrices

τa,b,c = Cov
(
vec(utu

′
t−a), vec(ut−bu

′
t−c)
)

=

E
(
vec(utu

′
t−a)vec(ut−bu

′
t−c)

′)− vec(Σu) vec(Σu)
′, a = 0, b = c

E
(
vec(utu

′
t−a)vec(ut−bu

′
t−c)

′) , otherwise
,

νa,b,c = Cov
(
vec(ut−am

′
t), vec(ut−bu

′
t−c)
)

=


E
(
vec(ut−am

′
t)vec(ut−bu

′
t−c)

′)− vec(H(1)Ψ′) vec(Σu)
′, a = 0, b = c

E
(
vec(ut−am

′
t)vec(ut−bu

′
t−c)

′)− E (vec(ut−am
′
t)) vec(Σu)

′, b = c

E
(
vec(ut−am

′
t)vec(ut−bu

′
t−c)

′) , b 6= c

,

ζa,b,c = Cov
(
vec(ut−am

′
t), vec(ut−bm

′
t−c)
)

=

E
(
vec(ut−am

′
t)vec(ut−bm

′
t−c)

′)− vec(H(1)Ψ′) vec(H(1)Ψ′)′, a = 0, b = c

E
(
vec(ut−am

′
t)vec(ut−bm

′
t−c)

′)− E (vec(ut−am
′
t))E

(
vec(ut−bm

′
t−c)

′) , otherwise.
.
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Then, the formulas for the sub-matrices of V can be obtained from V = QΩAQ′, where Q

is defined in (B.15) and ΩA is a symmetric block matrix consisting of 3× 3 blocks [ΩA](i,j),

i, j = 1, 2, 3. Precisely, we have [ΩA](i,j) = Ω(i,j), i, j ∈ {2, 3} as defined in Lemma B.1 and

[ΩA](1,1) =

(
Σu

∑∞
j=1

(∑∞
h=−∞ κ̌

′
j,h

)
(Cj ⊗ IK)′∑∞

i=1(Ci ⊗ IK)
(∑∞

h=−∞ κ̌i,h
) ∑∞

i,j=1

∑∞
h=−∞(Ci ⊗ IK)τ̌i,h,h+j(Cj ⊗ IK)′

)
,

[ΩA](2,1) = LK

(
∞∑

h=−∞

κ0,h,
∞∑
j=1

∞∑
h=−∞

(τ0,h,h+j + (ν ′ ⊗ κ0,h))(Cj ⊗ IK)′

)
,

[ΩA](3,1) =

(
∞∑

h=−∞

λ0,h,
∞∑
j=1

∞∑
h=−∞

(ν0,h,h+j + (ν ′ ⊗ λ0,h))(Cj ⊗ IK)′

)
,

where

κ̌i,h := κi,h + (ν ⊗ Σu)1(h = 0),

τ̌i,h,h+j := τi,h,h+j + (ν ′ ⊗ κi,h) + (ν ⊗ κ′j,h) + (νν ′ ⊗ Σu)1(h = 0)

and LK is the (K(K + 1)/2×K2) elimination matrix such that vech(A) = LKvec(A) for

any (K ×K) matrix A. More precisely, we have V (i,j) = V (j,i)′, i, j = 1, 2, 3 and

V (1,1) = (Γ−1
ZZ ⊗ IK)[ΩA](1,1)(Γ−1

ZZ ⊗ IK)′,

V (2,1) = [ΩA](2,1)(Γ−1
ZZ ⊗ IK)′,

V (2,2) = [ΩA](2,2) = Ω(2,2),

V (3,1) = −
([

ΓMZΓ−1
ZZ

]
⊗ IK

)
[ΩA](1,1)(Γ−1

ZZ ⊗ IK)′ + [ΩA](3,1)(Γ−1
ZZ ⊗ IK)′

V (3,2) = −
([

ΓMZΓ−1
ZZ

]
⊗ IK

)
[ΩA](1,2) + [ΩA](3,2)

= −
([

ΓMZΓ−1
ZZ

]
⊗ IK

)
[ΩA](1,2) + Ω(3,2)

V (3,3) =
([

ΓMZΓ−1
ZZ

]
⊗ IK

)
[ΩA](1,1)

([
ΓMZΓ−1

ZZ

]
⊗ IK

)′ − [ΩA](3,1)
([

ΓMZΓ−1
ZZ

]
⊗ IK

)′
−
([

ΓMZΓ−1
ZZ

]
⊗ IK

)
[ΩA](1,3) + [ΩA](3,3)

=
([

ΓMZΓ−1
ZZ

]
⊗ IK

)
[ΩA](1,1)

([
ΓMZΓ−1

ZZ

]
⊗ IK

)′ − [ΩA](3,1)
([

ΓMZΓ−1
ZZ

]
⊗ IK

)′
−
([

ΓMZΓ−1
ZZ

]
⊗ IK

)
[ΩA](1,3) + Ω(3,3).

A.2 CLT for IRFs and FEVDs

Corollary A.1 (CLTs for IRFs and FEVDs) Let r = g = 1. Under the the assump-

tions of Theorem 2.1, i.e. Assumptions 2.1, 2.2 and 2.4, for any s ∈ R, j,m ∈ {1, . . . , K}
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and i, h ∈ {0, 1, 2, . . .}, we have

(i)
√
T (Θ̂•1,i −Θ•1,i)

D→ N
(

0,ΣΘ̂•1,i

)
,

(ii)
√
T (Ξ̂•1,i(s;m, 1)− Ξ•1,i(s;m, 1))

D→ N
(

0,ΣΞ̂•1,i(s;m,1)

)
,

(iii)
√
T (ω̂j1,h − ωj1,h)

D→ N
(
0,Σω̂j1,h

)
,

where the exact formulas for the limiting variances can be found in Equations (B.22), (B.23),

and (B.24), respectively.

Remark A.1 Equations (B.22) and (B.23) that give ΣΘ̂•1,i
and ΣΞ̂•1,i(s;m,1) are generally

similar. However, we make three observations to highlight the differences between the asymp-

totic variances of one standard deviation IRFs and normalized IRFs. First, compared to

ΣΘ̂•1,i
, all components of ΣΞ̂•1,i(s;m,1) are scaled by (s/(e′mH

(1)σε(1)))
2. This is a natural scal-

ing as s/(e′mH
(1)σε(1)) is the normalization that researchers get to choose when converting

a one standard deviation IRF to a normalized IRF. Second, how the VMA coefficients, Φi,

interact with V (2,1), V (2,2), V (3,1), V (3,2), and V (3,3) changes when computing ΣΘ̂•1,i
versus

ΣΞ̂•1,i(s;m,1). Specifically, Φi is post-multiplied by the matrix (IK −H(1)σε(1)e
′
m/(e

′
mH

(1)σε(1)))

when switching from ΣΘ̂•1,i
to ΣΞ̂•1,i(s;m,1). Hence, changing from a one standard deviation

IRF to a normalized IRF changes how the asymptotic variances and covariances of σ and ϕ

impact the variance of the IRF at horizon i. Third, in comparison to ΣΘ̂•1,i
which depends on

both σ and ϕ, ΣΞ̂•1,i(s;m,1) does not depend on σ or its asymptotic variances and covariances,

V (2,1), V (2,2), and V (3,2). This is natural as Equations (5), (6), and (16) in the paper imply

Ξj1,i(s;m, 1) = se′jΦiϕ/(e
′
mϕ) when r = 1, which does not depend on σ.

A.3 CLT with ut and mt both iid

Corollary A.2 (V for iid innovations and iid proxies) Suppose that in addition to As-

sumptions 2.1, 2.2 and 2.4, the process (xt) with xt = (u′t,m
′
t)
′ is iid. Then, we have

√
T

 β̂ − β
σ̂ − σ
ϕ̂−ϕ

 D→ N (0, Viid) , Viid =

 V
(1,1)
iid V

(2,1)′
iid V

(3,1)′
iid

V
(2,1)
iid V

(2,2)
iid V

(3,2)′
iid

V
(3,1)
iid V

(3,2)
iid V

(3,3)
iid

 ,

4



where

V
(1,1)
iid = Γ−1

ZZ ⊗ Σu

V
(2,1)
iid = LK (E(vec(utu

′
t)u
′
t), OK2×K2p) ,

V
(2,2)
iid = LK (E (vec(utu

′
t)vec(utu

′
t)
′)− vec(Σu) vec(Σu)

′)L′K ,

V
(3,1)
iid = (E(vec(ut(mt − µm))u′t), OKr×K2p) ,

V
(3,2)
iid = [E(vec(ut(mt − µm)) vec(utut)

′)− vec(H(1)Ψ′) vec(Σu)]L
′
K ,

V
(3,3)
iid = E(vec(ut(mt − µm)) vec(ut(mt − µm))′)− vec(H(1)Ψ′) vec(H(1)Ψ′)′,

in which µm = E(mt).

We make two remarks about the form of Viid. First, V
(2,1)
iid and V

(3,1)
iid include OK2×K2p

and OKr×K2p, respectively. The position of these zeros indicates that the estimates of

α = vec(A1, . . . , Ap) (excluding the intercept, ν) are asymptotically uncorrelated with the

estimates of σ and ϕ, when ut and mt are both iid. Second, the joint third and fourth

moments of ut and mt in V
(3,1)
iid , V

(3,2)
iid , and V

(3,3)
iid can all be written in terms of mt − µm.

That is, the joint third and fourth moments of ut and mt in Viid only depend on the centered

proxy variable.

A.4 Detail for Theorem 3.1

The sub-matrices V
(i,j)
weak of Vweak are defined as those of V (i,j) as given in Section A.1,

but with κa,b, λa,b, τa,b,c, νa,b,c and ζa,b,c replaced by κa,b;∞, λa,b;∞, τa,b,c;∞, νa,b,c;∞ and

ζa,b,c;∞. In particular, νa,b,c;∞ = plimT→∞E
(
vec(mtu

′
t)vec(ut−hu

′
t−h)

′) and ζa,b,c;∞ =

plimT→∞E
(
vec(mtu

′
t)vec(mt−hu

′
t−h)

′), because ψT = C√
T
→ 0 as T → ∞ by Assumption

3.2(iii).
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B Proofs

B.1 Proof of Theorem 2.1

We define σ̃ = vech(Σ̃u), where Σ̃u = 1
T

∑T
t=1 utu

′
t and ϕ̃ = vec(H̃(1)Ψ′), where H̃(1)Ψ′ =

1
T

∑T
t=1 utm

′
t to get

√
T

 β̂ − β
σ̂ − σ
ϕ̂−ϕ

 =
√
T

 β̂ − β
(σ̃ − σ) + (σ̂ − σ̃)

(ϕ̃−ϕ) + (ϕ̂− ϕ̃)

 (B.1)

By standard arguments, we can show that
√
T (σ̂− σ̃) = oP (1). In contrast, it does not hold√

T (ϕ̂− ϕ̃) = oP (1) as we do not impose E(mt) = 0 and E(mty
′
t−j) = 0, j = 1, . . . , p (as it

was e.g. done in Mertens and Ravn (2013)) in our framework. Using

ût = ut +
[
(ν,A1, . . . , Ap)− (ν̂, Â1, . . . , Âp)

]
Zt−1 (B.2)

we can show

ϕ̂− ϕ̃ =− 1

T

T∑
t=1

vec
([

(ν̂, Â1, . . . , Âp)− (ν,A1, . . . , Ap)
]
Zt−1m

′
t

)
(B.3)

=− 1

T

T∑
t=1

(
(mtZ

′
t−1)⊗ IK

)
vec
([

(ν̂, Â1, . . . , Âp)− (ν,A1, . . . , Ap)
])

(B.4)

=−

((
1

T

T∑
t=1

mtZ
′
t−1

)
⊗ IK

)(
β̂ − β

)
(B.5)

=−
((

1

T
MZ ′

)
⊗ IK

)(
β̂ − β

)
, (B.6)

whereM = [m1, . . . ,mT ] is an (r×T ) matrix. Using K̃ = K(K+1)/2, (B.1) is asymptotically

equivalent to the following expression

√
T

 β̂ − β
σ̂ − σ
ϕ̂−ϕ

=

 IK2p+K OK2p+K×K̃ OK2p+K×Kr

OK̃×K2p+K IK̃ OK̃×Kr

−
(

1
T
MZ ′

)
⊗ IK OKr×K̃ IKr

√T
 β̂ − β
σ̃ − σ
ϕ̃−ϕ

 . (B.7)
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Furthermore, by using

Zt−1 =


1

yt−1

...

yt−p

 =


1

µ+
∑∞

j=0 Φjut−1−j
...

µ+
∑∞

j=0 Φjut−p−j

 =


1

∑∞
j=0


Φj(ut−1−j + ν)

...

Φj(ut−p−j + ν)


 (B.8)

=


1

∑∞
j=1


Φj−1(ut−j + ν)

...

Φj−p(ut−j + ν)


 =

(
1∑∞

j=1Cj(ut−j + ν)

)
, (B.9)

where we used µ = (IK − A1 − · · · − Ap)−1ν =
∑∞

j=0 Φjν, it can be shown that

√
T

 β̂ − β
σ̃ − σ
ϕ̃−ϕ

 (B.10)

=


{

( 1
T
ZZ ′)−1 ⊗ IK

}( IK OK×K2

OK2p×K
∑∞

j=1(Cj ⊗ IK)

)
1√
T

∑T
t=1

(
ut

vec(ut(u
′
t−j + ν ′))

)
1√
T

∑T
t=1 LK {vec(utu

′
t)− vec(Σu)}

1√
T

∑T
t=1

{
vec(utm

′
t)− vec(H(1)Ψ′)

}


By combining (B.10) and (B.7), we get

√
T

 β̂ − β
σ̂ − σ
ϕ̂−ϕ

=

 ( 1
T
ZZ ′)−1 ⊗ IK OK2p+K×K̃ OK2p+K×Kr

OK̃×K2p+K IK̃ OK̃×Kr

−
[(

1
T
MZ ′

)
( 1
T
ZZ ′)−1

]
⊗ IK OKr×K̃ IKr

 (B.11)

×


(

IK OK×K2

OK2p×K
∑∞

j=1(Cj ⊗ IK)

)
1√
T

∑T
t=1

(
ut

vec(ut(u
′
t−j + ν ′))

)
1√
T

∑T
t=1 LK {vec(utu

′
t)− vec(Σu)}

1√
T

∑T
t=1

{
vec(utm

′
t)− vec(H(1)Ψ′)

}


(B.12)

=: Q̂T (Aq + (A− Aq)) , (B.13)

with an obvious notation for the ((K2p+K + K̃ +Kr)× (K2p+K + K̃ +Kr)) matrix Q̂T

in (B.11) and where A denotes the term in brackets in equation (B.12) and Aq is the same
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expression, but with
∑∞

j=1 replaced by
∑q

j=1 for some q ∈ N. In the following, we make use

of Proposition 6.3.9 of Brockwell and Davis (1991) and, to show asymptotic normality of A,

it suffices to show

(a) Aq
D→ N (0,ΩA

q ) as T →∞

(b) ΩA
q → ΩA as q →∞

(c) ∀ δ > 0 : lim
q→∞

lim sup
T→∞

P (|A− Aq|1 > δ) = 0.

To prove (a), we can write

Aq =


IK OK×K2 · · · OK×K2 OK×K̃ OK×Kr

OK2p×K C1 ⊗ IK · · · Cq ⊗ IK OK2p×K̃ OK2p×Kr

OK̃×K OK̃×K2 · · · OK̃×K2 IK̃ OK̃×Kr

OKr×K OKr×K2 · · · OKr×K2 OKr×K̃ IKr



× 1√
T

T∑
t=1



ut

vec(ut(u
′
t−1 + ν ′))
...

vec(ut(u
′
t−q + ν ′))

LK {vec(utu
′
t)− vec(Σu)}

vec(utm
′
t)− vec(H(1)Ψ′)


= Rq

1√
T

T∑
t=1

Wt,q

with an obvious notation for the ((K +K2p+ K̃ +Kr)× (K +K2q+ K̃ +Kr)) matrix Rq,

and the (K +K2q + K̃ +Kr)-dimensional vector Wt,q. By using Lemma B.1, this leads to

Aq
D→ N (0,ΩA

q ), where ΩA
q = RqΩqR

′
q =

(
[ΩA

q ](i,j),

i, j = 1, 2, 3

)
(B.14)

for T → ∞. Here, ΩA
q is a symmetric block matrix consisting of 3 × 3 blocks [ΩA

q ](i,j),
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i, j = 1, 2, 3. Precisely, we have [ΩA
q ](i,j) = Ω

(i,j)
q , i, j ∈ {2, 3} and

[ΩA
q ](1,1) =

(
Σu

∑q
j=1

[(∑∞
h=−∞ κj,h

)
+ (ν ⊗ Σu)

]′
(Cj ⊗ IK)′∑q

i=1(Ci ⊗ IK)
[(∑∞

h=−∞ κi,h
)

+ (ν ⊗ Σu)
] ∑q

i,j=1

∑∞
h=−∞(Ci ⊗ IK)τ̌i,h,h+j(Cj ⊗ IK)′

)
,

[ΩA
q ](2,1) = LK

(
∞∑

h=−∞

κ0,h,

q∑
j=1

∞∑
h=−∞

(τ0,h,h+j + (ν ′ ⊗ κ0,h))(Cj ⊗ IK)′

)
,

[ΩA
q ](3,1) =

(
∞∑

h=−∞

λ0,h,

q∑
j=1

∞∑
h=−∞

(ν0,h,h+j + (ν ′ ⊗ λ0,h))(Cj ⊗ IK)′

)
,

where

τ̌i,h,h+j := τi,h,h+j + (ν ′ ⊗ κi,h) + (ν ⊗ κ′j,h) + (νν ′ ⊗ Σu)1(h = 0).

Letting q → ∞, part (b) follows from the summability of fourth order cumulants im-

posed in Assumption 2.4(iii) and the exponential decay of the sequence (Φj, j ∈ N) and,

consequently, also of (Cj, j ∈ N). It remains to show part (c). Noting that the first part of

the first sub-vector and the second and third sub-vectors of A − Aq in Equation (B.12) are

zero, it suffices to show (c) for the second part of the first sub-vector only. Let d ∈ RK2p

and δ > 0. Then, using Markov inequality, finiteness of (all entries of) ΩA and exponential

decay of (Cj, j ∈ N), we get

P

(∣∣∣∣∣
∞∑

j=q+1

d′(Cj ⊗ IK)
1√
T

T∑
t=1

vec(ut(u
′
t−j + ν ′))

∣∣∣∣∣ > δ

)

≤ 1

δ2T
E

∣∣∣∣∣
∞∑

j=q+1

d′(Cj ⊗ IK)
T∑
t=1

vec(ut(u
′
t−j + ν ′))

∣∣∣∣∣
2


=
1

δ2

∞∑
i,j=q+1

d′(Ci ⊗ IK)

{
1

T

T∑
t1,t2=1

E
(
vec(ut1(u

′
t1−i + ν ′)) vec(ut2(u

′
t2−j + ν ′))′

)}
(Cj ⊗ IK)′d

=
1

δ2

∞∑
i,j=q+1

d′(Ci ⊗ IK)

 T−1∑
h=−(T−1)

(
1− |h|

T

)
τ̌i,h,h+j

 (Cj ⊗ IK)′d

→
T→∞

1

δ2

∞∑
i,j=q+1

d′(Ci ⊗ IK)
∞∑

h=−∞

τ̌i,h,h+j(Cj ⊗ IK)′d

→
q→∞

0.

9



When dealing with Q̂T , using similar arguments as in (Brüggemann, Jentsch, and Trenkler,

2016, Lemma A.2), it is possible to show that

Q̂T
P→ Q =

 Γ−1
ZZ ⊗ IK OK2p+K×K̃ OK2p+K×Kr

OK̃×K2p+K IK̃ OK̃×Kr

−
[
ΓMZΓ−1

ZZ

]
⊗ IK OKr×K̃ IKr

 , (B.15)

where

ΓZZ := E
(

1

T
ZZ ′

)
= E(ZiZ

′
i) =

 1 (1p ⊗ µ)′

(1p ⊗ µ)

(
E(yt−iy

′
t−j),

i, j = 1, . . . , p

)  , (B.16)

ΓMZ := E
(

1

T
MZ ′

)
= E(miZ

′
i) =

[
µm,

∞∑
j=1

(
E(mtu

′
t−j) + µmν

′)C ′j
]
. (B.17)

Finally, an application of Slutsky’s lemma completes the proof of the CLT leading to a

limiting normal distribution with mean zero and covariance matrix V = QΩAQ′. �

Lemma B.1 (CLT for innovations) Let q ∈ N and Wt,q = (W
(0)′
t ,W

(1)′
t,q ,W

(2)′
t ,W

(3)′
t )′,

where

W
(0)
t = ut

W
(1)
t,q = (vec(ut(u

′
t−1 + ν ′))′, . . . , vec(ut(ut−q + ν ′))′)′

W
(2)
t = LK{vec(utu

′
t)− vec(Σu)} = vech(utu

′
t)− vech(Σu)

W
(3)
t = vec(utm

′
t)− vec(H(1)Ψ′).

Under Assumptions 2.1, 2.2 and 2.4, we have

1√
T

T∑
t=1

Wt,q
D→ N (0,Ωq),

where Ωq is a ((K +K2q + K̃ +Kr)× (K +K2q + K̃ +Kr)) block matrix

Ωq =


Ω(0,0) Ω

(0,1)
q Ω(0,2) Ω(0,3)

Ω
(1,0)
q Ω

(1,1)
q Ω

(1,2)
q Ω

(1,3)
q

Ω(2,0) Ω
(2,1)
q Ω(2,2) Ω(2,3)

Ω(3,0) Ω
(3,1)
q Ω(3,2) Ω(3,3)

 . (B.18)
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Here, Ω(i,j) = Ω(j,i)′ for i, j ∈ {0, 1, 2, 3} and

Ω(0,0) = Σu

Ω(1,0)
q =

∞∑
h=−∞


Cov

(
vec(ut(u

′
t−1 + ν ′)), ut−h

)
...

Cov
(
vec(ut(u

′
t−q + ν ′)), ut−h

)
 =

∞∑
h=−∞


κ1,h + (ν ⊗ IK)Σu1(h = 0)

...

κq,h + (ν ⊗ IK)Σu1(h = 0)


Ω(1,1)
q =

∞∑
h=−∞

(
τi,h,h+j + κi,h(ν ⊗ IK)′ + (ν ⊗ IK)κ′j,h + (ν ⊗ IK)Σu(ν ⊗ IK)′1(h = 0)

i, j = 1, . . . , q

)

Ω(2,0) = LK

(
∞∑

h=−∞

Cov (vec(utu
′
t), ut−h)

)
= LK

(
∞∑

h=−∞

κ0,h

)

Ω(2,1)
q = LK

(
∞∑

h=−∞

[τ0,h,h+1 + κ0,h(ν ⊗ IK)′, . . . , τ0,h,h+q + κ0,h(ν ⊗ IK)′]

)

Ω(2,2) = LK

(
∞∑

h=−∞

Cov
(
vec(utu

′
t), vec(ut−hu

′
t−h)

))
L′K = LK

(
∞∑

h=−∞

τ0,h,h

)
L′K

Ω(3,0) =
∞∑

h=−∞

Cov (vec(utm
′
t), ut−h) =

∞∑
h=−∞

λ0,h

Ω(3,1)
q =

∞∑
h=−∞

[ν0,h,h+1 + λ0,h(ν ⊗ IK)′, . . . , ν0,h,h+q + λ0,h(ν ⊗ IK)′]

Ω(3,2) =

(
∞∑

h=−∞

Cov
(
vec(utm

′
t), vec(ut−hu

′
t−h)

))
L′K =

(
∞∑

h=−∞

ν0,h,h

)
L′K

Ω(3,3) =
∞∑

h=−∞

Cov
(
vec(utm

′
t), vec(mt−hu

′
t−h)

)
=

∞∑
h=−∞

ζ0,h,h

Proof.

The result follows analogously to the proof of Lemma A.1 (ii) in Brüggemann, Jentsch, and

Trenkler (2014) when allowing for an intercept and extending it to the proxy SVAR setup.

In particular, for Ω
(1,0)
q , we have

Ω(1,0)
q =

∞∑
h=−∞


Cov

(
vec(utu

′
t−1), ut−h

)
...

Cov
(
vec(utu

′
t−q), ut−h

)
+

∞∑
h=−∞


Cov (vec(utν

′), ut−h)
...

Cov (vec(utν
′), ut−h)

 ,
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and the summands of the second term become

1q ⊗ Cov (vec(utν
′), ut−h) = 1q ⊗ (ν ⊗ IK)Cov (ut, ut−h) = 1q ⊗ (ν ⊗ IK)Σu1(h = 0)

leading to

Ω(1,0)
q =

∞∑
h=−∞


κ1,h

...

κq,h

+ 1q ⊗ (ν ⊗ IK)Σu

For Ω(1,1), we get

Ω(1,1) =
∞∑

h=−∞

(
Cov

(
vec(ut(u

′
t−i + ν ′)), vec(ut−h(u

′
t−h−j + ν ′))

)
i, j = 1, . . . , q

)

and for the summands, using vec(AB) = (B′ ⊗ I) vec(A) = (B′ ⊗ I)A if A is a (column)

vector and E(vec(ut(u
′
t−i + ν ′))) = 0 for all i , we get

Cov
(
vec(ut(u

′
t−i + ν ′)), vec(ut−h(u

′
t−h−j + ν ′))

)
=E

(
vec(utu

′
t−i) vec(ut−hu

′
t−h−j)

′)+ E
(
vec(utu

′
t−i) vec(ut−hν

′)′
)

+ E
(
vec(utν

′) vec(ut−hu
′
t−h−j)

′)+ E (vec(utν
′) vec(ut−hν

′)′)

=τi,h,h+j + κi,h(ν ⊗ IK)′ + (ν ⊗ IK)κ′j,h + (ν ⊗ IK)Σu(ν ⊗ IK)′1(h = 0).

For Ω
(2,1)
q , we get

Ω(2,1)
q = LK

(
∞∑

h=−∞

[
Cov

(
vec(utu

′
t)− vec(Σu), vec(ut−h(u

′
t−h−j + ν ′))

)
, j = 1, . . . , q

])

with summands

Cov
(
vec(utu

′
t)− vec(Σu), vec(ut−h(u

′
t−h−j + ν ′))

)
=E

(
vec(utu

′
t)(vec(ut−hu

′
t−h−j))

′)+ E (vec(utu
′
t)(vec(ut−hν

′))′)

=τ0,h,h+j + E
(
vec(utu

′
t)u
′
t−h
)

(ν ⊗ IK)′

=τ0,h,h+j + κ0,h(ν ⊗ IK)′.
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For Ω
(3,1)
q , we get

Ω(3,1)
q =

∞∑
h=−∞

[
Cov

(
vec(utm

′
t)− vec(ΨH(1)′), vec(ut−h(u

′
t−h−j + ν ′))

)
, j = 1, . . . , q

]
with summands

Cov
(
vec(utm

′
t)− vec(H(1)Ψ′), vec(ut−h(u

′
t−h−j + ν ′))

)
=E

(
vec(utm

′
t)(vec(ut−hu

′
t−h−j))

′)+ E (vec(utm
′
t)(vec(ut−hν

′))′)

=ν0,h,h+j + E
(
vec(utm

′
t)u
′
t−h
)

(ν ⊗ IK)′

=ν0,h,h+j + λ0,h(ν ⊗ IK)′.

�

B.2 Proof of Corollary A.1

As r = g = 1, we can make use of the identification and estimation schemes (up to

sign restriction) given in Equations (14) and (15) in the paper. It becomes apparent that

H(1)σε(1) is a smooth function of Σu and ϕ as, by assumption, Σu is positive definite and

ϕ is not the zero vector. Further, the VMA coefficients, Φi’s, are smooth functions of

α = vec(A1, . . . , Ap) = J̃β, where J̃ = [OK2p×K : IK2p]. Hence, estimates of ϕ are smooth

functions of α̂ = vec(Â1, . . . , Âp) = J̃β̂. In this section, we use q ∈ {0, 1, . . .} to denote the

IRF or FEVD horizon, with q = 0 being the horizon of the immediate impact of a shock.

This is a different use of q than what we use in Section B.1. Using the Delta method similar

to (and borrowing some of the notation from) Lütkepohl (2005, Proposition 3.6), we get that

√
T



vec(Φ̂0)− vec(Φ0)

vec(Φ̂1)− vec(Φ1)
...

vec(Φ̂q)− vec(Φq)

σ̂ − σ
Ĥ(1)σε(1) −H(1)σε(1)


D→ N (0,W ) , W =

 W (1,1) W (2,1)′ W (3,1)′

W (2,1) W (2,2) W (3,2)′

W (3,1) W (3,2) W (3,3)

 (B.19)

13



holds, where

W (1,1) = G0,qJ̃V
(1,1)J̃ ′G′0,q

W (2,1) = V (2,1)J̃ ′G′0,q

W (2,2) = V (2,2) (B.20)

W (3,1) = MσV
(2,1)J̃ ′G′0,q +MϕV

(3,1)J̃ ′G′0,q

W (3,2) = MσV
(2,2) +MϕV

(3,2)

W (3,3) = MσV
(2,2)M ′

σ +MϕV
(3,2)M ′

σ +MσV
(3,2)′M ′

ϕ +MϕV
(3,3)M ′

ϕ

with V (i,j) defined in Theorem 2.1, G0,q = [G′0 : G′1 : · · · : G′q]′ is a (K2(q+ 1)×K2p) matrix,

Gi is a (K2 ×K2p) matrix given by

Gi =
∂vec(Φi)

∂α′
=

i−1∑
s=0

J(A′)i−1−s ⊗ Φs,

J = [IK : 0K : · · · : 0K ] is a (K ×Kp) matrix,

A =



A1 A2 · · · · · · Ap

IK 0K · · · · · · 0K

0K IK 0K · · · 0K
...

. . . . . . . . .
...

0K · · · 0K IK 0K


,

is the companion matrix, and following standard rules for matrix differentiation from, for

example, Sections A.12 and A.13 in Lütkepohl (2005),

Mσ = ∂vec(H(1)σε(1))/∂σ
′ = ϕ

(
(1/2)(ϕ′Σ−1

u ϕ)−3/2
) (
ϕ′ ⊗ϕ′

) (
(Σ−1

u )′ ⊗ (Σ−1
u )
)
DK

Mϕ = ∂vec(H(1)σε(1))/∂ϕ
′ = −ϕ

(
(1/2)(ϕ′Σ−1

u ϕ)−3/2
) (
ϕ′((Σ−1

u )′ + Σ−1
u )
)

+
(
ϕ′Σ−1

u ϕ
)−1/2

IK .

This is sufficient for using the Delta method and deriving the limiting distributions of one
standard deviation IRFs Θ̂j1,i, normalized IRFs Ξ̂j1,i(s;m, 1) and FEVDs ω̂j1,h as all of

them are smooth functions of Φ̂i, i = 0, . . . , q, Σ̂u and Ĥ(1)σε(1) .

(i) For one standard deviation IRFs Θ̂•1,i = Φ̂iĤ(1)σε(1) , we can make use of the rele-
vant parts of (B.19) as the basis result for another application of the Delta method. That
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is, we shall use

√
T

(
vec(Φ̂i)− vec(Φi)

̂H(1)σε(1) −H(1)σε(1)

)
D→ N

0,

 GiJ̃V
(1,1)J̃ ′G′i

(
MσV

(2,1)J̃ ′G′i +MϕV
(3,1)J̃ ′G′i

)′
MσV

(2,1)J̃ ′G′i +MϕV
(3,1)J̃ ′G′i W (3,3)

 .(B.21)

Together with

∂vec(ΦiH
(1)σε(1))/∂vec(Φi)

′ = (H(1)σε(1))
′ ⊗ IK and ∂vec(ΦiH

(1)σε(1))/∂vec(H(1)σε(1))
′ = Φi,

Equation (B.21) implies

√
T (Θ̂•1,i −Θ•1,i)

D→ N
(

0,ΣΘ̂•1,i

)
,

where

ΣΘ̂•1,i
=

(
σε(1)H

(1)′ ⊗ IK
)
GiJ̃V

(1,1)J̃ ′G′i
(
H(1)σε(1) ⊗ IK

)
(B.22)

+Φi

(
MσV

(2,1)J̃ ′G′i +MϕV
(3,1)J̃ ′G′i

) (
H(1)σε(1) ⊗ IK

)
+
(
σε(1)H

(1)′ ⊗ IK
) (
MσV

(2,1)J̃ ′G′i +MϕV
(3,1)J̃ ′G′i

)′
Φ′i + ΦiW

(3,3)Φ′i.

(ii) For normalized IRFs Ξ̂•1,i(s;m, 1) = sΘ̂•1,i/(e
′
mĤ

(1)σε(1)) = sΦ̂iĤ(1)σε(1)/(e
′
mĤ

(1)σε(1)),

together with

∂vec(sΦiH
(1)σε(1)/(e

′
mH

(1)σε(1)))

∂vec(Φi)′
= s

(
(H(1)σε(1)/(e

′
mH

(1)σε(1)))
′ ⊗ IK

)
,

∂vec(sΦiH
(1)σε(1)/(e

′
mH

(1)σε(1)))

∂vec(H(1)σε(1))
′ = sΦi

(
H(1)σε(1)

(
− 1

(e′mH
(1)σε(1))

2

)
e′m +

1

(e′mH
(1)σε(1))

IK

)
Equation (B.21) gives

√
T (Ξ̂•1,i(s;m, 1)− Ξ•1,i(s;m, 1))

D→ N
(

0,ΣΞ̂•1,i(s;m,1)

)
,
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where

ΣΞ̂•1,i(s;m,1) =

(
s

e′mH
(1)σε(1)

)2
[(
σε(1)H

(1)′ ⊗ IK
)
GiJ̃V

(1,1)J̃ ′G′i

(
H(1)σε(1) ⊗ IK

)
(B.23)

+

(
Φi

(
IK −H(1)σε(1)e

′
m

(
1

e′mH
(1)σε(1)

)))(
MσV

(2,1)J̃ ′G′i +MϕV
(3,1)J̃ ′G′i

)(
H(1)σε(1) ⊗ IK

)
+

(
σε(1)H

(1)′ ⊗ IK
)(

MσV
(2,1)J̃ ′G′i +MϕV

(3,1)J̃ ′G′i

)′(
Φi

(
IK −H(1)σε(1)e

′
m

(
1

e′mH
(1)σε(1)

)))′
+

(
Φi

(
IK −H(1)σε(1)e

′
m

(
1

e′mH
(1)σε(1)

)))
W (3,3)

(
Φi

(
IK −H(1)σε(1)e

′
m

(
1

e′mH
(1)
σε(1)

)))′]
.

Further, it is the case that
(
IK −H(1)σε(1)e

′
m/(e

′
mH

(1)σε(1))
)
H(1)σε(1) = 0. Then,

H(1)σε(1) = ϕ(ϕ′Σ−1
u ϕ)−1/2 from (14) in the paper and after imposing a sign restriction

implies
(
IK −H(1)σε(1)e

′
m/(e

′
mH

(1)σε(1))
)
Mσ = 0 and

(
IK −H(1)σε(1)e

′
m/(e

′
mH

(1)σε(1))
)
Mϕ =

(IK −ϕe′m/(e′mϕ)) (ϕ′Σ−1
u ϕ)−1/2. It follows that

ΣΞ̂•1,i(s;m,1) =

(
s

e′mϕ

)2
[

(ϕ′ ⊗ IK)GiJ̃V
(1,1)J̃ ′G′i (ϕ⊗ IK)

+

(
Φi

(
IK −ϕe′m

(
1

e′mϕ

)))
V (3,1)J̃ ′G′i (ϕ⊗ IK)

+ (ϕ′ ⊗ IK)GiJ̃V
(1,3)

(
Φi

(
IK −ϕe′m

(
1

e′mϕ

)))′
+

(
Φi

(
IK −ϕe′m

(
1

e′mϕ

)))
V (3,3)

(
Φi

(
IK −ϕe′m

(
1

e′mϕ

)))′]
,

so that ΣΞ̂•1,i(s;m,1) does not depend on σ, V (2,1), V (2,2) or V (3,2).

(iii) For FEVDs

ω̂j1,h =

∑h−1
i=0 Θ̂2

j1,i∑h−1
i=0 e

′
jΦ̂iΣ̂uΦ̂′iej

=

∑i−1
i=0(e′jΦ̂iĤ

(1)σε(1))
2

M̂SEj(h)
,

together with

Fj1,h(r) :=
∂vec(ωj1,h)

∂vec(Φr)′

= −2

∑h−1
i=0 (e′jΦiH

(1)σε(1))
2

(MSEj(h))2
(e′jΦrΣu ⊗ e′j) + 2

e′jΦrH
(1)σε(1)

MSEj(h)
(σε(1)H

(1)′ ⊗ e′j)
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for r = 0, . . . , h− 1 and

Qj1,h :=
∂vec(ωj1,h)

∂σ′
= −

∑h−1
i=0 (e′jΦiH

(1)σε(1))
2

(MSEj(h))2

h−1∑
i=0

(e′jΦi ⊗ e′jΦi)DK

Nj1,h :=
∂vec(ωj1,h)

∂vec(H(1)σε(1))
′ =

2

MSEj(h)

h−1∑
i=0

(e′jΦiH
(1)σε(1))(e

′
jΦi)

Equation (B.19) with q = h− 1 gives

√
T (ω̂j1,h − ωj1,h)

D→ N
(
0,Σω̂j1,h

)
,

where

Σω̂j1,h
= [Fj1,h : Qj1,h : Nj1,h]

 W (1,1) W (2,1)′ W (3,1)′

W (2,1) W (2,2) W (3,2)′

W (3,1) W (3,2) W (3,3)


 F

′
j1,h

Q′j1,h

N ′j1,h

 (B.24)

and Fj1,h = [Fj1,h(0) : Fj1,h(1) : · · · : Fj1,h(h− 1)]. �

B.3 Proof of Theorem 3.1

By replacing the α-mixing condition in Assumption 2.4 imposed for the strong proxy case

by the uniform mixing condition in Assumption 3.2 used for a weak proxy, the proof follows

by the same arguments as used in Theorem 2.1.

B.4 Proof of Theorem 3.2

Throughout this proof, we make use of ϕ̂T = Ĥ(1)ψT in the r = g = 1 case.

(i) To prove (22) in the paper, we write

√
T

(
se′jΦ̂iϕ̂T

e′mϕ̂T

)
=
√
T

(
se′jΦ̂iĤ(1)ψT

e′mĤ
(1)ψT

)

=

(
(H(1)ψT )′ ⊗ (se′j) se′jΦ̂i

O1×K2 e′m

)
√
T

(
vec(Φ̂i)− vec(Φi)

Ĥ(1)ψT −H(1)ψT

)
+

(
se′jΦiH

(1)
√
TψT

e′mH
(1)
√
TψT

)
.
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By making use of ψT = C/
√
T → 0, Φ̂i

P→ Φi, Slutsky’s Lemma and of the asymptotic

normality in (21) in the paper, this leads to

√
T

(
se′jΦ̂iĤ(1)ψT

e′mĤ
(1)ψT

)
D→N

((
se′jΦiH

(1)C

e′mH
(1)C

)
,

(
O1×K2 se′jΦi

O1×K2 e′m

)
Rweak

(
O1×K2 se′jΦi

O1×K2 e′m

)′)

=N

((
se′jΦiH

(1)C

e′mH
(1)C

)
,

(
se′jΦi

e′m

)
V

(3,3)
weak

(
sΦ′iej, em

))

=

(
se′jΦi

e′m

)
N
(
H(1)C, V

(3,3)
weak

)
.

The proof of (23) in part (i)(a) in the paper, follows immediately from (22) in the paper

using

Ξ̂j1,i(s;m, 1) =
se′jΦ̂iĤ(1)ψT

e′mĤ
(1)ψT

=

√
Tse′jΦ̂iĤ(1)ψT
√
Te′mĤ

(1)ψT
.

By multiplying (22) in the paper from the left with (1,−ξ0), we get

√
T
(
se′jΦ̂iϕ̂− ξ0e

′
mϕ̂
)

D→ (se′jΦi − ξ0e
′
m)N

(
H(1)C, V

(3,3)
weak

)
.

In part (i)(b) in the paper under the null, then

(1,−ξ0)

(
se′jΦi

e′m

)
H(1)C = 0C = 0,

yielding mean zero in Equation (24) in the paper. Under the alternative, se′jΦiϕT −
ξAe

′
mϕT = 0 with ξA 6= ξ0, we have

se′jΦiH
(1)C − ξ0e

′
mH

(1)C = se′jΦiH
(1)C − ξ0e

′
mH

(1)C − (se′jΦiH
(1)C − ξAe′mH(1)C)

= ξAe
′
mH

(1)C − ξ0e
′
mH

(1)C

= (ξA − ξ0)e′mH
(1)C,

yielding a mean of (ξA − ξ0)e′mH
(1)C in Equation (25) in the paper.

(ii) From Equation (18) in the paper, under the null of se′jΦiH
(1)ψ − ξ0e

′
mH

(1)ψ = 0, we

18



get

√
T
(
se′jΦ̂iĤ(1)ψ − ξ0e

′
mĤ

(1)ψ
)

=
(

(H(1)ψ)′ ⊗ (se′j), se
′
jΦ̂i − ξ0e

′
m

)√
T

(
vec(Φ̂i)− vec(Φi)

Ĥ(1)ψ −H(1)ψ

)
D→
(
(H(1)ψ)′ ⊗ (se′j), se

′
jΦi − ξ0e

′
m

)
N (0, R),

analogously to (20) in the paper, but based on Theorem 2.1, where R is defined as Rweak,

but with Vweak replaced by V .

Under the alternative, se′jΦiϕ − ξAe′mϕ = 0 with ξA 6= ξ0, Equation (18) in the paper

can be rewritten as

√
T
(
se′jΦ̂iĤ(1)ψ − ξ0e

′
mĤ

(1)ψ
)

=
(

(H(1)ψ)′ ⊗ (se′j), se
′
jΦ̂i − ξ0e

′
m

)√
T

(
vec(Φ̂i)− vec(Φi)

Ĥ(1)ψ −H(1)ψ

)
+
√
T (ξA − ξ0)e′mH

(1)ψ,

with the
√
T (ξA − ξ0)e′mH

(1)ψ term going to ∞ as T →∞ a.s.. �

B.5 Proof of Theorem 4.1

To disentangle the autoregressive part and the MBB part of the bootstrap proposal, we will

proceed in two steps. First, using Lemma B.2, we have that it is asymptotically equivalent

if the estimator β̂ is replaced by the true VAR coefficients β when conducting the residual-

based MBB scheme as described in Section 4.1 of the paper. Second, we will resemble

the proof of Theorem 2.1 in the bootstrap world and make use of Lemma B.3 to prove an

asymptotic normality results that corresponds to what is obtained in Theorem 2.1.

Hence, using Polya’s Theorem and (the notation introduced in) Lemma B.2, it remains

to show that
√
T ((β̃∗ − β̃)′, (σ̃∗ − σ̂)′, (ϕ̂∗ − ϕ̃)′)′

D→ N (0, V ) in probability with limiting

covariance matrix V as obtained in Theorem 2.1. Following the lines of the proof of Theorem

19



2.1 from (B.1) - (B.13), we get

√
T

 β̃∗ − β̃
σ̃∗ − σ̃
ϕ̃∗ − ϕ̃

=


{

( 1
T
Z̃∗Z̃∗′)−1 ⊗ IK

}
OK2p+K×K̃ OK2p+K×Kr

OK̃×K2p+K IK̃ OK̃×Kr

−
[(

1
T
M∗Z̃∗′

)(
1
T
Z̃∗Z̃∗′

)−1
]
⊗ IK OKr×K̃ IKr


(B.25)

×


(

IK OK×K2

OK2p×K
∑T−1

j=1 (Cj ⊗ IK)

)
1√
T

∑T
t=1

(
ũ∗t

vec(ũ∗t (ũ
∗′
t−j + ν ′))

)
1√
T

∑T
t=1 LK {vec(ũ∗t ũ

∗′
t )− E∗(vec(ũ∗t ũ

∗′
t ))}

1√
T

∑T
t=1 {vec(ũ∗tm

∗′
t )− E∗(vec(ũ∗tm

∗′
t ))}


(B.26)

=: Q̃∗T
(
A∗q + (A∗ − A∗q)

)
, (B.27)

where M∗ = [m∗1, . . . ,m
∗
T ] and A∗ denotes the term in brackets in equation (B.26) and A∗q

is the same expression, but with
∑T−1

j=1 replaced by
∑q

j=1 for some q ∈ N. In the following,

we make use of Proposition 6.3.9 of Brockwell and Davis (1991) and, to show asymptotic

normality of A, it suffices to show

(a) A∗q
D→ N (0,ΩA

q ) in probability as T →∞

(b) ΩA
q → ΩA as q →∞

(c) ∀ δ > 0 : lim
q→∞

lim sup
T→∞

P ∗(|A∗ − A∗q|1 > δ) = 0 in probability.

To prove (a), we can write

A∗q = Rq
1√
T

T∑
t=1



ũ∗t

vec(ũ∗t (ũ
∗′
t−1 + ν ′))
...

vec(ũ∗t (ũ
∗′
t−q + ν ′))

LK {vec(ũ∗t ũ
∗′
t )− E∗(vec(ũ∗t ũ

∗′
t ))}

vec(ũ∗tm
∗′
t )− E∗(vec(ũ∗tm

∗′
t ))


= Rq

1√
T

T∑
t=1

W̃ ∗
t,q

with Rq as defined in the proof of Theorem 2.1 and with an obvious notation for the (K +
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K2q + K̃ +Kr)-dimensional vector W̃ ∗
t,q. Using Lemma B.3, we get

A∗q
D→ N (0,ΩA

q ), where ΩA
q = RqΩqR

′
q =

(
[ΩA

q ](i,j),

i, j = 1, 2, 3

)
(B.28)

for T → ∞ and with ΩA
q as defined in the proof of Theorem 2.1. Part (b) follows from the

cumulant summability condition imposed in Assumption 4.1 in the paper and the exponential

decay of (Cj, j ∈ N). As it remains to consider the second part of the first sub-vector of

A∗−A∗q in Equation (B.26) only, part (c) follows as in Theorem 4.1 in Brüggemann, Jentsch,

and Trenkler (2016). Finally, using similar arguments as in the proof of Lemma A.2 in

Brüggemann, Jentsch, and Trenkler (2016), it is possible to show that Q̃∗T → Q with respect

to P ∗, where Q is defined in (B.15), which concludes the proof. �

Lemma B.2 (Equivalence of bootstrap estimators) Under the assumptions of Theo-

rem 4.1 in the paper, we have

√
T
((
β̂∗ − β̂

)
−
(
β̃∗ − β̃

))
= oP ∗ , (B.29)

√
T ((σ̂∗ − σ̂)− (σ̃∗ − σ̃)) = oP ∗ , (B.30)
√
T ((ϕ̂∗ − ϕ̂)− (ϕ̃∗ − ϕ̃)) = oP ∗ , (B.31)

where β̃∗ − β̃ := ((Z̃∗Z̃∗′)−1Z̃∗ ⊗ IK)ũ∗, σ̃∗ − σ̃ = vech(Σ̃∗u) − E∗(vech(Σ̃∗u)) with Σ̃∗u =
1
T

∑T
t=1
̂̃u∗t ̂̃u∗′t , and ϕ̃∗−ϕ̃ = vec(H̃(1)∗Ψ∗′)−E∗(vec(H̃(1)∗Ψ∗′)) with H̃(1)∗Ψ∗′ = 1

T

∑T
t=1
̂̃u∗tm∗′t .

Here, pre-sample values ỹ∗−p+1, . . . , ỹ
∗
0 are set to zero and ỹ∗1, . . . , ỹ

∗
T is generated according

to ỹ∗t = ν + A1ỹ
∗
t−1 + · · · + Apỹ

∗
t−p + ũ∗t , where ũ∗1, . . . , ũ

∗
T is an analogously drawn version

of u∗1, . . . , u
∗
T as described in Steps 2 and 3 of the MBB procedure introduced in Section

4 of the paper, but from u1, . . . , uT instead of û1, . . . , ûT . Further, we use the notation

Z̃∗t = (1, ỹ∗′t , . . . , ỹ
∗′
t−p+1)′ ((Kp + 1) × 1), Z̃∗ = (Z̃∗0 , . . . , Z̃

∗
T−1) ((Kp + 1) × T ), and ũ∗ =

vec(ũ∗1, . . . , ũ
∗
T ) (KT×1). Finally, ̂̃u∗t = ỹ∗t−ν̃∗−Ã∗1ỹ∗t−1−· · ·−Ã∗pỹ∗t−p are the residuals from

a VAR(p) model fitted to the bootstrap sample ỹ∗−p+1, . . . , ỹ
∗
0, ỹ
∗
1, . . . , ỹ

∗
T leading to coefficients

ν̃∗, Ã∗1, . . . , Ã
∗
p.

Proof.

Using similar arguments as in the proof of Lemma A.1 in Brüggemann, Jentsch, and Trenkler

(2016), the claim follows. However, note that in contrast to that Lemma A.1, we allow for

an intercept in (B.29), include proxy variables to get (B.31) and we do not (yet) replace the

bootstrap residuals ̂̃u∗t by the bootstrap errors ũ∗t to get (B.30) and (B.31). �
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Lemma B.3 (CLT for bootstrap innovations) Suppose the assumptions of Theorem

4.1 hold and let W̃ ∗
t,q = (W̃

∗(0)′
t , W̃

∗(1)′
t,q , W̃

∗(2)′
t , W̃

∗(3)′
t )′, where

W̃
∗(0)
t = ũ∗t

W̃
∗(1)
t,q = (vec(ũ∗t (ũ

∗′
t−1 + ν ′))′, . . . , vec(ũ∗t (ũ

∗′
t−q + ν ′))′)′

W̃
∗(2)
t = LK{vec(ũ∗t ũ

∗′
t )− E∗(vec(ũ∗t ũ

∗′
t ))} = vech(ũ∗t ũ

∗′
t )− E∗(vech(ũ∗t ũ

∗′
t ))

W̃
∗(3)
t = vec(ũ∗tm

∗′
t )− E∗(vec(ũ∗tm

∗′
t )).

Then, we have

1√
T

T∑
t=1

W̃ ∗
t,q
D→ N (0,Ωq),

in probability, where Ωq as defined in Lemma B.1.

Proof.

Using similar arguments as in the proof of Lemma A.3 in Brüggemann, Jentsch, and

Trenkler (2016), asymptotic normality can be deduced for the properly centered quantity
1√
T

∑T
t=1 W̃

∗
t,q − E∗(W̃ ∗

t,q) (note that E∗(W̃ ∗(1)
t,q ) might be not exactly zero) making use of the

α-mixing and cumulant conditions imposed in Assumptions 2.4 and 4.1 in the paper. Finally,

because
√
TE∗(W̃ ∗

t,q) = oP (1), we get the claimed result. �

B.6 Proof of Theorem 4.2

By replacing the α-mixing condition in Assumption 2.4 imposed for the strong proxy case by

the uniform mixing condition in Assumptions 3.2 and 4.2 used for a weak proxy, the proof

follows by the same arguments as used in Theorem 4.1.

B.7 Proof of Theorem 4.3

(i) To prove (30) in the paper, we can write

√
T

(
se′jΦ̂

∗
i ϕ̂
∗

e′mϕ̂
∗

)
=

(
se′jΦ̂

∗
i (ϕ̂∗ − ϕ̂) + se′j

(
Φ̂∗i − Φ̂i

)
ϕ̂+ se′jΦ̂iϕ̂

e′m (ϕ̂∗ − ϕ̂) + e′mϕ̂

)

=

(
se′jΦ̂

∗
i

e′m

)
√
T (ϕ̂∗ − ϕ̂) +

(
se′j

(
Φ̂∗i − Φ̂i

)
ϕ̂

0

)
+

(
se′jΦ̂i

e′m

)
√
T ϕ̂
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By Theorem 4.2, we have(
se′jΦ̂

∗
i

e′m

)
√
T (ϕ̂∗ − ϕ̂)

D→

(
se′jΦi

e′m

)
N
(

0, V
(3,3)
weak

)
,

because
√
T ϕ̂ =

√
T (ϕ̂− ϕT ) +

√
T ϕ̂ =

√
T (ϕ̂− ϕT ) + C = OP ∗(1), the second summand

se′j

(
Φ̂∗i − Φ̂i

)
ϕ̂ vanishes asymptotically and the third term converges by Theorem 3.2(i)

such that
√
T (se′jΦ̂

∗
i ϕ̂
∗, e′mϕ̂

∗) converges (conditional on the data) to(
X1,weak

X2,weak

)
+

(
Z1,weak

Z2,weak

)
,

where (Z1,weak, Z2,weak)
′ as in Theorem 3.2(i.a) in the paper. Hence, (31) follows immediately

and to prove (32) in the paper, similarly to (24) in the paper, we can write

√
T [(se′jΦ̂

∗
i − ξ0e

′
m)ϕ̂∗ − (se′jΦ̂i − ξ0e

′
m)ϕ̂]

=
(
se′jΦ̂

∗
i − ξ0e

′
m

)√
T (ϕ̂∗ − ϕ̂) + se′j

(√
T (Φ̂∗i − Φ̂i)

)
ϕ̂

=
(
se′jΦ̂

∗
i − ξ0e

′
m

)(√
T (ϕ̂∗ − ϕ̂)

)
+
(
ϕ̂′ ⊗ (se′j)

) (√
T (vec(Φ̂∗i )− vec(Φ̂i))

)
=
(
ϕ̂′ ⊗ (se′j), se

′
jΦ̂
∗
i − ξ0e

′
m

)√
T

(
vec(Φ̂∗i )− vec(Φ̂i)

ϕ̂∗ − ϕ̂

)
D→
(
O1×K ⊗ (se′j), se

′
jΦi − ξ0e

′
m

)
N (0, Rweak) in probability

=N (0, (se′jΦi − ξ0e
′
m)V

(3,3)
weak (se′jΦi − ξ0e

′
m)′),

which uses Theorems 3.1 and 4.2, ϕ̂
P→ OK×1 with a weak proxy, and Φ̂∗i

P→ Φi in probability.

(ii) Similarly, for a strong proxy, we can show that

√
T [(se′jΦ̂

∗
i − ξ0e

′
m)ϕ̂∗ − (se′jΦ̂i − ξ0e

′
m)ϕ̂]

D→
(
ϕ′ ⊗ (se′j), se

′
jΦi − ξ0e

′
m

)
N (0, R)

�
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C Residual-Based Wild Bootstrap

This appendix is about the residual-based wild bootstrap and has three sections. Section

C.1 gives the algorithm for the residual-based wild bootstrap. Section C.2 gives the theorem

showing the asymptotic inconsistency of the residual-based wild bootstrap and provides some

discussion. Section C.3 gives the proof of inconsistency of the residual-based wild bootstrap.

The wild bootstrap approach was proposed in Mertens and Ravn (2013) in a framework

that imposed centered proxy variables, i.e. E(mt) = 0, and that the proxy is uncorrelated

with lags of the time series process, i.e. E(mtyt−j) = 0, j = 1, . . . , p. As the wild bootstrap

requires generally centeredness of the random variables and it may capture only rather

specific types of dependence, we stick to such conditions in this section. Nevertheless, we are

able to prove that even under these additional conditions, the wild bootstrap will generally

fail to correctly mimic the limiting distributions in proxy SVAR setups. Note also that

without imposing the assumption E(mt) = 0, an additional (initial) centering step of the

proxy, i.e. using m̃t = mt − 1
T

∑T
t=1mt as the proxy to be fed in the wild bootstrap scheme

will also not cure this wild bootstrap inconsistently.

For this appendix, we also do not include the intercept, ν, in VAR. Because of this, we use

α = vec(A1, . . . , Ap) instead of β = vec(ν,A1, . . . , Ap), which are linked with J̃ = [OK2p×K :

IK2p] via α = J̃β.

C.1 Residual-based Wild Bootstrap Algorithm

The algorithm for the recursive-design residual-based wild bootstrap is as follows:

1. Independently draw T observations of the scalar random sequence (ηt, t ∈ Z) from a

distribution with E(ηt) = 0, E(η2
t ) = 1, and E(η4

t ) <∞.

2. Use u+
t = ûtηt to produce (u+

1 , . . . , u
+
T ) and m+

t = mtηt to produce (m+
1 , . . . ,m

+
T ).

Here, we use “ + ” to denote bootstrap quantities obtained from the wild bootstrap.

3. Set the initial condition (y+
−p+1, . . . , y

+
0 ) = (y−p+1, . . . , y0). Use the initial condition

along with Â1, . . . , Âp and u+
t to recursively produce (y+

1 , . . . , y
+
T ) with

y+
t = Â1y

+
t−1 + · · ·+ Âpy

+
t−p + u+

t .

4. Estimate Â+
1 , . . . , Â

+
p by least squares from the bootstrap sample (y+

−p+1, . . . , y
+
T ) and

set û+
t = y+

t − Â+
1 y

+
t−1 − · · · − Â+

p y
+
t−p.
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5. Use û+
t and m+

t for t = 1, . . . , T to estimate Σ̂+
u = T−1

∑T
t=1 û

+
t û

+′
t and Ĥ(1)Ψ′

+

=

T−1
∑T

t=1 û
+
t m

+′
t .

6. Use Â+
1 , . . . , Â

+
p , Σ̂+

u and Ĥ(1)Ψ′
+

to produce the bootstrapped IRFs and FEVDs. In

this step, use same the identification scheme as when computing the point estimates

of the IRFs and FEVDs. This includes using the same sign and scale normalizations.

Repeat the algorithm a large number of times and collect the bootstrapped IRFs and FEVDs.

Confidence intervals are commonly produced with a standard percentile interval by sorting

the bootstrapped IRFs and FEVDs and keeping the α/2- and 1 − α/2-percentiles as the

confidence interval, where α is the level of significance. For example, see Mertens and Ravn

(2013) and Gertler and Karadi (2015). Using Hall’s percentile intervals (Hall (1992) and

Lütkepohl (2005, Appendix D)) does not change the asymptotic results below.

Many choices of distribution are available when drawing the bootstrap multiplier ηt. For

example, drawing ηt from the standard normal distribution satisfies the conditions in step

1 of the algorithm. A second choice is the Rademacher distribution, which sets ηt = 1

with probability 0.5 and ηt = −1 with probability 0.5. This distribution is used in, for

example, Mertens and Ravn (2013) and Gertler and Karadi (2015). Because of its use in

the proxy SVAR literature, we provide additional results and discussion for the Rademacher

distribution in Section C.2. We also use the Rademacer distribution in the simulations in

Section G.

C.2 Inconsistency of the Wild Bootstrap

In this section, we show that the wild bootstrap is generally not consistent for inference on

α̂, σ̂ and ϕ̂ and, consequently, also for statistics that are functions of these estimators. We

only study the strong proxy case, E(mtε
(1)′
t ) = Ψ with Ψ(r × g) and rank g, and we do not

discuss the weak proxy case.

Define α̂+ = vec(Â+
1 , . . . , Â

+
p ), σ̂+ = vech(Σ̂+

u ), and ϕ̂+ = vec(Ĥ(1)Ψ′
+

) to be the esti-

mators from the wild bootstrap that correspond to α, σ and ϕ, respectively. We derive the

joint limiting variance of
√
T ((α̂+ − α̂)′, (σ̂+ − σ̂)′, (ϕ̂+ − ϕ̂)′)′ in the following theorem.

Theorem C.1 (Residual-based Wild Bootstrap Limiting Variance) Suppose As-

sumptions 2.1, 2.2, 2.4, and 4.1 in the paper all hold as in Theorem 4.1 in the paper.

In addition, we assume that xt = (u′t,m
′
t)
′ is a martingale difference sequence (mds), i.e.,

in particular, E(mt) = 0. If the residual-based wild bootstrap from Section C.1 is used to
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compute bootstrap statistics α̂+, σ̂+ and ϕ̂+, then we have

T V ar+

 α̂+−α̂
σ̂+−σ̂
ϕ̂+−ϕ̂

→
 V

(1,1)
mds OK2p×K̃ OK2p×Kr

OK̃×K2p τ0,0,0{E(η4
t )− 1} ν ′0,0,0{E(η4

t )− 1}
OKr×K2p ν0,0,0{E(η4

t )− 1} ζ0,0,0{E(η4
t )− 1}

 =: VWB,

in which V
(1,1)
mds denotes J̃V (1,1)J̃ ′ with V (1,1) as given in Section A.1 but with an additional

mds assumption imposed on xt = (u′t,m
′
t)
′.

As VWB 6= V for V as defined in Theorem 2.1 of the paper, a consequence of Theorem

C.1 is that the residual-based wild bootstrap is generally inconsistent for statistics that are

functions of α̂, σ̂ and ϕ̂. However, V
(1,1)
WB does equal J̃V (1,1)J̃ ′ after imposing an additional

mds assumption on xt = (u′t,m
′
t)
′. Hence, the only exclusion to the invalidity of the wild

bootstrap is the case where the statistic of interest is a (smooth) function of α̂ under an

additional mds assumption.1 The validity of the wild bootstrap for smooth functions of α̂

was already addressed for the univariate case by Gonçalves and Kilian (2004) and for the

multivariate case by Brüggemann, Jentsch, and Trenkler (2014). The general asymptotic

inconsistency of the residual-based wild bootstrap for functions of α̂, σ̂ and ϕ̂, such as, for

example, structural IRFs, without adding proxy variables to the VAR setup has already been

discussed in Brüggemann, Jentsch, and Trenkler (2016), who show that the wild bootstrap

cannot replicate the fourth moments of the VAR innovations. Note also that imposing iid-

ness for the process (xt, t ∈ Z) does not lead to wild bootstrap consistency either. Compare

Corollary A.2 in their paper.

If the i.i.d. bootstrap multipliers (ηt, t ∈ Z) follow a Rademacher distribution, we have

E+(η4
t ) = E(η4

t ) = 1, which immediately leads to the following corollary.

Corollary C.1 (Residual-based Rademacher Wild Bootstrap Limiting Variance)

Under the assumptions of Theorem C.1 and if the (iid) bootstrap multipliers (ηt, t ∈ Z)

follow a Rademacher distribution, that is P (ηt = −1) = P (ηt = 1) = 0.5, we get

VWB =

(
V

(1,1)
mds OK2p×K̃+Kr

OK̃+Kr×K2p OK̃+Kr×K̃+Kr

)
. (C.1)

A comparison of VWB in Equation (C.1) with V from Theorem 2.1 of the paper leads to

the conclusion that a considerable amount of estimation uncertainty caused by estimating

1The wild bootstrap would also remain valid under mds assumptions in a very special and unrealistic

scenario where V (2,1) and V (3,1) vanish and E(η4
t ) accidently yields V

(i,j)
WB = V (i,j) for i, j = 1, 2.
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Σu and H(1)Ψ′ with Σ̂u and Ψ̂H(1)′, respectively, is simply ignored by the wild bootstrap

using a Rademacher distribution for the bootstrap multipliers. Consequently, as can also be

seen in the Monte Carlo simulations conducted in Section G of the paper, the wild bootstrap

clearly leads to considerable undercoverage of corresponding bootstrap confidence intervals

for IRFs and FEVDs.

To see why the wild bootstrap asymptotically ignores, for example, the variance of H(1)Ψ′,

we temporarily consider a simpler specification than the VAR and assume that ut can be

directly observed. Then, the Rademacher wild bootstrap estimate of H(1)Ψ′ is given by

Ĥ(1)Ψ′
+

= T−1

T∑
t=1

u+
t m

+′
t .

Because u+
t = utηt and m+

t = mtηt and ηt equals 1 or -1, it is the case that

Ĥ(1)Ψ′
+

= T−1

T∑
t=1

(ηt)
2utm

′
t = T−1

T∑
t=1

utm
′
t = Ĥ(1)Ψ′.

That is, when ut is directly observable, the Rademacher wild bootstrap estimator is simply

the non-bootstrapped sample estimate and Ĥ(1)Ψ′
+

= Ĥ(1)Ψ′ holds for every bootstrap

replication. This implies that the uncertainty in the estimation of the covariance H(1)Ψ′ is

completely ignored and hence not captured by the Rademacher wild bootstrap.

Going back to the VAR, it is not the case that ut is directly observable. Thus, in the

bootstrap, we use û+
t rather than u+

t to estimate the covariances. Because û+
t is different for

each bootstrap replication, it will not be the case that Ĥ(1)Ψ′
+

= Ĥ(1)Ψ′ holds exactly, but

Ĥ(1)Ψ′
+

= Ĥ(1)Ψ′+oP+(1) as T →∞, where P+ denotes the probability measure induced by

the Rademacher wild bootstrap. Hence, although the bootstrapped variance of H(1)Ψ′ will

generally not be zero in finite samples with the Rademacher wild bootstrap, it will converge

to zero as the sample size increases.

C.3 Proof of Theorem C.1

As u+
t = ûtηt and m+

t = mtηt, by taking conditional expectations, we get

E+
(
vec(u+

t u
+′
t−a)vec(u+

t−bu
+′
t−c)

′) = vec(ûtû
′
t−a)vec(ût−bû

′
t−c)

′E (ηtηt−aηt−bηt−c) , (C.2)
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where

E (ηtηt−aηt−bηt−c) =


E(η4

t ), a = b = c = 0

1, a = 0 6= b = c or b = 0 6= a = c or c = 0 6= a = b

0, otherwise

. (C.3)

Note that analogous representations also hold for E+
(
vec(u+

t−am
+′
t )vec(ut−bu

+′
t−c)

′) as well

as E+
(
vec(u+

t−am
+′
t )vec(u+

t−bm
+′
t−c)

′). Now, by using arguments similar to those used in

the proof of Theorem 4.1 in Section B.5, we can show that the variance of
√
T ((α̂+ −

α̂)′, (σ̂+ − σ̂)′, (ϕ̂+ − ϕ̂)′)′ converges to a quantity corresponding to V as defined in

Theorem 2.1 in the paper, where all τa,b,c, νa,b,c and ζa,b,c terms have to be replaced by

τa,b,cE (ηtηt−aηt−bηt−c) , νa,b,cE (ηtηt−aηt−bηt−c) and ζa,b,cE (ηtηt−aηt−bηt−c), respectively, lead-

ing to the claimed result. �

D Montiel Olea, Stock and Watson Analytical Confi-

dence Sets

In this section, we provide additional detail about the Montiel Olea, Stock, and Watson

(forthcoming) (MSW) confidence sets that we use in our Monte Carlo simulations.

MSW construct confidence sets by collecting all values of ξ0 such that
√
T (se′jΦ̂i −

ξ0e
′
m)Ĥ(1)ψ =

√
T (se′jΦ̂i − ξ0e

′
m)ϕ̂ is not statistically different from zero. We are in the

r = g = 1 case so that H(1)ψ = ϕ is K×1. Then, building off of Equation (18) in the paper,

we can write
√
T (se′jΦ̂i − ξ0e

′
m)ϕ̂ as

(
1 −ξ0

)(ϕ′ ⊗ (se′j) se′jΦ̂i

0 e′m

)
√
T

(
vec(Φ̂i)− vec(Φi)

ϕ̂−ϕ

)
.

We can write this as

(
1 −ξ0

)(ϕ′ ⊗ (se′j) se′jΦ̂i

0 e′m

)
√
T

(
vec(Φ̂i)− vec(Φi)

ϕ̂−ϕT

)

for the weak proxy case, in which ϕT = H(1)ψT = H(1)ψT/
√
T .
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In the strong proxy case, we have

√
T

(
vec(Φ̂i)− vec(Φi)

ϕ̂−ϕ

)
D→ N (0, R) , R =

(
GiJ̃V

(1,1)J̃ ′G′i GiJ̃V
(3,1)′

V (3,1)J̃ ′G′i V (3,3)

)

and in the weak proxy case, we have

√
T

(
vec(Φ̂i)− vec(Φi)

ϕ̂−ϕ

)
D→ N (0, Rweak) , R =

(
GiJ̃V

(1,1)
weak J̃

′G′i GiJ̃V
(3,1)′
weak

V
(3,1)
weak J̃

′G′i V
(3,3)
weak

)
.

In both the strong and weak case, we use J̃ = [OK2p×K : IK2p] and Gi = ∂vec(Φi)/∂α
′ with

α = vec(A1, . . . , Ap). We use the formula in Lütkepohl (2005, Proposition 3.6) to compute

estimates of Gi, denoted with Ĝi, by plugging Â1, . . . , Âp in for A1, . . . , Ap.

To proceed in computing the MSW sets, we need estimates of V (1,1), V (3,1), and V (3,3).

We also need estimates of V
(1,1)
weak , V

(3,1)
weak , and V

(3,3)
weak . We use the same estimator in both the

strong and weak case. For the estimator, we use the [ΩA](i,j) notation from Section A.1 and

add hats to denote estimators. We first compute(
[Ω̂A](1,1) [Ω̂A](1,3)

[Ω̂A](3,1) [Ω̂A](3,3)

)
= T−1

T∑
t=1

(
vec(ûtZ

′
t−1)

ûtmt

)(
vec(ûtZ

′
t−1)

ûtmt

)′

where Zt is defined in Equation (13) of the paper. Then, we compute(
V̂ (1,1) V̂ (3,1)′

V̂ (3,1) V̂ (3,3)

)
=

(
V̂

(1,1)
weak V̂

(3,1)′
weak

V̂
(3,1)
weak V̂

(3,3)
weak

)

=

(
Γ̂−1
ZZ ⊗ IK OK2p+K×K

Γ̂MZΓ̂−1
ZZ ⊗ IK IK

)(
[Ω̂A](1,1) [Ω̂A](1,3)

[Ω̂A](3,1) [Ω̂A](3,3)

)(
Γ̂−1
ZZ ⊗ IK OK2p+K×K

Γ̂MZΓ̂−1
ZZ ⊗ IK IK

)′
,

in which Γ̂ZZ = T−1
∑T

t=1 Zt−1Z
′
t−1 and Γ̂MZ = T−1

∑T
t=1 mtZ

′
t−1. For the rest of this section,

we only use the V̂ (1,1), V̂ (3,1), and V̂ (3,3) notation with the understanding that is covers both

the strong and weak cases.

Next, under the null of Ξj1,i(s;m, 1) = ξ0 we estimate the asymptotic variance of
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√
T (se′jΦi − ξ0e

′
m)ϕ to be

V̂(se′jΦi−ξ0e′m)ϕ

=
(

1 −ξ0

)(ϕ̂′ ⊗ (se′j) se′jΦ̂i

0 e′m

)(
ĜiJ̃ V̂

(1,1)J̃ ′Ĝ′i ĜiJ̃ V̂
(3,1)′

V̂ (3,1)J̃ ′Ĝ′i V̂ (3,3)

)(
ϕ̂′ ⊗ (se′j) se′jΦ̂i

0 e′m

)′(
1

−ξ0

)
,

which is quadratic in ξ0.

To produce the 1−α MSW confidence set, we follow MSW and compute a Wald statistic

with T (se′jΦ̂iϕ̂− ξ0e
′
mϕ̂)2 in the numerator and V̂(se′jΦi−ξ0e′m)ϕ in the denominator. Then, we

keep all values ξ0 that yield a Wald statistic less than or equal to χ2
1,1−α. We write out the

numerator as

T (se′jΦ̂iϕ̂)2 − ξ02T (se′jΦ̂iϕ̂)(e′mϕ̂) + ξ2
0T (e′mϕ̂)2 (D.1)

and the denominator as

s2(ϕ̂⊗ ej)′ĜiJ̃ V̂
(1,1)J̃ ′Ĝ′i(ϕ̂⊗ ej) + 2s2(ϕ̂⊗ ej)′ĜiJ̃ V̂

(3,1)′Φ̂′iej + s2e′jΦ̂iV̂
(3,3)Φ̂′iej

−ξ0[2s(ϕ̂⊗ ej)′ĜiJ̃ V̂
(3,1)′em + 2se′jΦ̂iV̂

(3,3)em] + ξ2
0e
′
mV̂

(3,3)em.
(D.2)

Written out in this way, we can see that the Wald statistic being less than or equal to χ2
1,1−α

can be written as a quadratic inequality in ξ0. That is, it can take the form

aξ2
0 + bξ0 + c ≤ 0. (D.3)

Notice that if a > 0, then a plot of aξ2
0 + bξ0 + c as a function of ξ0 opens up. In this case,

the set of ξ0 that satisfies Equation (D.3) is the interval (−b±
√
b2 − 4ac)/2a. If a < 0, then

a plot of aξ2
0 + bξ0 + c as a function of ξ0 opens down. In this case, the set of ξ0 that satisfies

Equation (D.3) is either the entire real line or the union of (−∞,−(b+
√
b2 − 4ac)/2a) and

(−(b−
√
b2 − 4ac)/2a,∞).

Equations (D.1), (D.2) and (D.3) imply that

a = T (e′mϕ̂)2 − χ2
1,1−αe

′
mV̂

(3,3)em. (D.4)

Then, the condition that a > 0 to ensure that the MSW set is one bounded interval is

equivalent to
T (e′mϕ̂)2

e′mV̂
(3,3)em

> χ2
1,1−α, (D.5)

which is a Wald test that would reject the null hypothesis of e′mϕ = 0 for the alternative
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e′mϕ 6= 0. That is, if the covariance of û
(m)
t and mt is statistically different from zero, then

the MSW confidence set is one bounded interval. We use this test in our Monte Carlo

simulations to verify if the MSW sets are bounded or not.

E Tests of Proxy Strength

In Section 5 of the paper, we discuss tests of proxy strength. We use this section to lay out

the details of these tests. For all of these tests, we only consider the r = g = 1 case. In

this section, we use the notation M = [m1, . . . ,mT ]′, Û = [û1, . . . , ûT ]′ in which ût is a VAR

residual, Û1 = [û1,1, . . . , û1,T ]′ where û1,t is the first element of ût, and 1T is a (T × 1) vector

of 1s.

We consider two different tests, both using F statistics. For the first test, consider the

least squares regression of mt on a constant and ût. We denote the vector of regression errors

as

Ê = M − [1T , Û ]([1T , Û ]′[1T , Û ])−1([1T , Û ]′M).

Then, the F statistic is

F =

(
T − 1

K

)(∑T
t=1(mt − m̄)2

Ê ′Ê
− 1

)
, (E.1)

in which m̄ = T−1
∑T

t=1 mt. Stock and Watson (2012) use this F statistic and Lunsford

(2015) provides further analysis.

For the second test, we partition u1 and H so that
u

(1)
t

(1× 1)

u
(2)
t

(K − 1× 1)

 =


H(1,1) H(1,2)

(1× 1) (1×K − 1)

H(2,1) H(2,2)

(K − 1× 1) (K − 1×K − 1)




ε

(1)
t

(1× 1)

ε
(2)
t

(K − 1× 1)

 .

In this partition, ε
(1)
t and ε

(2)
t are defined as in the paper. In practice, the partition of the

VAR innovations often follows an economic logic. For example, if ε
(1)
t is a monetary policy

shock, then u
(1)
t is the VAR innovation that corresponds to the monetary policy indicator –

typically a short-term interest rate (Gertler and Karadi, 2015). We assume that H(1,1) 6= 0

and that H(2,2) is invertible.
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With this partition, we can rearrange terms to get

u
(2)
t = H(2,1)H(1,1)−1u

(1)
t +

(
H(2,2) −H(2,1)H(1,1)−1H(1,2)

)
ε

(2)
t ,

which shows that u
(2)
t can be written as a function of u

(1)
t and ε

(2)
t . We now make two remarks.

First, because this is the r = g = 1 case, the jthe element of H(2,1)H(1,1)−1 can be written

as (e′j+1H
(1)σ2

ε(1)
)/(e′1H

(1)σ2
ε(1)

) = Ξj+1,1,0(1; 1, 1). Hence, H(2,1)H(1,1)−1 yields the normalized

IRF on impact with s = 1. Second, u
(1)
t is correlated with

(
H(2,2) −H(2,1)H(1,1)−1H(1,2)

)
ε

(2)
t .

Because of this correlation, we cannot consistently estimate H(2,1)H(1,1)−1 by regressing u
(2)
t

on u
(1)
t . Rather, we can use mt as an instrument and compute

̂H(2,1)H(1,1)−1 =

(
T∑
t=1

û
(2)
t mt

)(
T∑
t=1

û
(1)
t mt

)−1

.

This is the IV estimator of the normalized IRF. The corresponding first-stage is the regression

of û
(1)
t on mt. Hence, we test the strength of mt by computing the F statistic of the regression

of û
(1)
t on mt, which we denote with FIV to avoid confusion with F statistic in (E.1). First,

we compute

Ẽ = Û1 − [1T ,M ]([1T ,M ]′[1T ,M ])−1([1T ,M ]′Û1).

Then, we have

FIV = (T − 1)

(
Û ′Û

Ẽ ′Ẽ
− 1

)
(E.2)

The F statistics in Equations (E.1) and (E.2) are the ones that we make use of in the

paper. In addition, a third statistic that we compute is the left-hand side of Equation (D.5).

As discussed in Section D, this is the Wald statistic for testing the null hypothesis of e′mϕ = 0

against the alternative e′mϕ 6= 0, and this test indicates when the MSW analytic sets will be

one bounded interval.

F Computation Details for Grid MBB AR Confidence

Sets

The grid bootstrap AR confidence sets constructed with the MBB that we provide an al-

gorithm for in Section 4.3 of the paper is grid-based and can be computationally intensive.

Further, in Section G.1 below, we provide an algorithm for a similar AR confidence set
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in which asymptotic simulation replaces the MBB. In this section, we briefly discuss some

computational details.

Based on the algorithm in the paper, we can bootstrap a large number of
√
T [(se′jφ̂

∗
i −

ξge
′
m)ϕ̂∗ − (sejφ̂i − ξge′m)ϕ̂] for each ξg in a grid. Then, for each grid point, we can sort the

bootstrapped values
√
T [(se′jφ̂

∗
i − ξge

′
m)ϕ̂∗ − (sejφ̂i − ξge

′
m)ϕ̂] and compute the quantiles,

q̂q,α/2 and q̂q,1−α/2, of
√
T [(se′jφ̂

∗
i − ξge′m)ϕ̂∗− (sejφ̂i− ξge′m)ϕ̂]. Finally, we check −q̂q,1−α/2 ≤√

T (sejφ̂i − ξge′m)ϕ̂ ≤ −q̂q,α/2. We now make two comments about this algorithm.

First, when computing
√
T [(se′jφ̂

∗
i − ξge

′
m)ϕ̂∗ − (sejφ̂i − ξge

′
m)ϕ̂], (sejφ̂i − ξge

′
m)ϕ̂ is

the same in every bootstrap loop. Based on this, we can sort
√
T (se′jφ̂

∗
i − ξge

′
m)ϕ̂∗ and

compute the quantiles, q̃q,α/2 and q̃q,1−α/2, of
√
T (se′jφ̂

∗
i − ξge

′
m)ϕ̂∗. Then, we can check

−q̃q,1−α/2 +
√
T (sejφ̂i− ξge′m)ϕ̂ ≤

√
T (sejφ̂i− ξge′m)ϕ̂ ≤ −q̃q,α/2 +

√
T (sejφ̂i− ξge′m)ϕ̂. This

simplifies to checking −q̃q,1−α/2 ≤ 0 ≤ −q̃q,α/2 or, equivalently, q̃q,α/2 ≤ 0 ≤ q̃q,1−α/2.

Second, we find that sorting
√
T (se′jφ̂

∗
i − ξge′m)ϕ̂∗ to compute q̃q,α/2 and q̃q,1−α/2 is com-

putationally expensive. Because of this, we use a different approach to check the condition

q̃q,α/2 ≤ 0 ≤ q̃q,1−α/2. Let F ∗g denote the bootstrap analog of an empirical distribution func-

tion. That is, F ∗g is the distribution of the bootstrapped values of
√
T (se′jφ̂

∗
i − ξge′m)ϕ̂∗ so

that F ∗g (q̃q,α/2) = α/2 and F ∗g (q̃q,1−α/2) = 1−α/2. Because cumulative distributions are non-

decreasing, it is the case that q̃q,α/2 ≤ 0 ≤ q̃q,1−α/2 implies F ∗g (q̃q,α/2) ≤ F ∗g (0) ≤ F ∗g (q̃q,1−α/2)

or, equivalently, α/2 ≤ F ∗g (0) ≤ 1− α/2. Hence, we can check either q̃q,α/2 ≤ 0 ≤ q̃q,1−α/2 or

α/2 ≤ F ∗g (0) ≤ 1 − α/2 when constructing our confidence intervals. We use the latter and

compute F ∗g (0) as the fraction of the bootstrapped values of
√
T (se′jφ̂

∗
i − ξge′m)ϕ̂∗ that are

less than or equal to zero. We find that computing this fraction is computationally faster

than sorting the bootstrapped values.

Based on these two comments, we compute the grid MBB AR confidence sets with the

following algorithm.

1. Construct a grid ξ = {ξ1, . . . ξG}, with ξg denoting one grid point, of null hypotheses

Ξj1,i(s;m, 1) = ξg.

2. Follow steps 1 through 7 of the residual-based MBB algorithm from Section 4.1 of

the paper to compute a large number of the bootstrapped estimates Â∗1, . . . , Â
∗
p and

ϕ̂∗ = Ĥ(1)ψ
∗
.

3. For each grid point, use the bootstrapped estimates to compute
√
T (se′jΦ̂

∗
i − ξge′m)ϕ̂∗

for each bootstrap loop. Compute the fraction of the bootstrapped values
√
T (se′jφ̂

∗
i −

ξge
′
m)ϕ̂∗ that are less than or equal to zero.
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4. Construct the confidence interval for Ξj1,i(s;m, 1) by including any grid point, ξg ∈ ξ,

with the property that the fraction in the previous step is between α/2 and 1− α/2.

For the simulation approach in Section G.1 below, we use an analogous algorithm.

G Additional Monte Carlo Results

In this section, we provide additional Monte Carlo simulation results. In Subsection G.1, we

show the simulation results from the paper but include three additional confidence interval

constructions: the Rademacher wild bootstrap, the MBB with Hall’s percentile intervals,

and a grid AR confidence set constructed with asymptotic simulation. In Subsection G.2,

we show results for one standard deviation IRFs. In Subsection G.3, we show results for

95% confidence intervals. In Subsection G.4, we show results based on simulations with an

effective sample size of T = 2000. In Subsection G.5, we show results for a data generating

process (DGP) with less persistence in the VAR slope coefficients. In Subsection G.6, we

show results for a DGP with more persistent stochastic volatility. In Subsection G.7, we

show results for a DGP in which the proxy variable can be censored to zero. Finally, in

section G.8, we show results when the VAR is estimated with lag augmentation in the spirit

of Inoue and Kilian (2020).

For all of the DGPs in this section, except for in Subsection G.5, the IRFs and FEVD are

the same and shown in Figure G.1. These are also the IRFs and FEVD in the simulations

in the paper. The IRFs have hump shapes that are common in macroeconomic studies. We

show the IRFs and FEVDs for the less persistent DGP in Subsection G.5.

G.1 Additional Confidence Interval Constructions

We begin by using the data generating process (DGP) in the paper and including results for

three additional confidence interval constructions.

The first additional confidence interval is constructed using the residual-based wild boot-

strap, used in Mertens and Ravn (2013), Gertler and Karadi (2015) and other proxy SVAR

papers. The algorithm is described above in Section C.1. Following Mertens and Ravn (2013)

and Gertler and Karadi (2015), we draw ηt from the Rademacher distribution: ηt = −1 with

probability 0.5 and ηt = 1 with probability 0.5.

The second additional confidence interval uses the MBB but constructs Hall’s percentile

interval (Hall (1992) and Lütkepohl (2005, Appendix D)) instead of the standard percentile
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Figure G.1: The one standard deviation IRF, normalized IRF and FEVD from the structural
VAR used in the paper and in every simulation in this supplemental appendix, except for in
Subsection G.5.

interval. Intuitively, this interval flips the standard percentile interval around the respective

IRF or FEVD in order to adjust for bias. Asymptotically, Hall’s percentile interval is equiv-

alent to the standard percentile interval because the limiting distribution of the IRFs and

FEVDs are normal and, hence, symmetric.

The third confidence interval is constructed similarly to the grid MBB AR confidence

sets; however, the MBB is replaced with an asymptotic simulation design. The algorithm is

initialized by estimating β̂ and ϕ̂ and their corresponding asymptotic variance. We use(
V̂ (1,1) V̂ (3,1)′

V̂ (3,1) V̂ (3,3)

)

as estimated in Section D to be the asymptotic variance. That is, the estimated asymptotic

variance used for simulation is the same as the estimated asymptotic variance used for the
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MSW analytical sets. The algorithm proceeds as follows

1. Construct a grid ξ = {ξ1, . . . ξG}, with ξg denoting one grid point, of null hypotheses

Ξj1,i(s;m, 1) = ξg.

2. Simulate a large number of βsim, yielding Asim1 , . . . , Asimp , and ϕsim from

N

((
β̂

ϕ̂

)
,

(
V̂ (1,1) V̂ (3,1)′

V̂ (3,1) V̂ (3,3)

))

3. For each grid point, use the simulated values Asim1 , . . . , Asimp and ϕsim to compute√
T [(se′jΦ

sim
i −ξge′m)ϕsim− (se′jΦ̂i−ξge′m)ϕ̂] for each bootstrap loop. Define qsimg,α/2 and

qsimg,1−α/2 to be the α/2 and 1 − α/2 quantiles of this simulated statistic for grid point

ξg.

4. Construct the confidence interval for Ξj1,i(s;m, 1) by including any grid point, ξg ∈ ξ,

with the property −qsimg,1−α/2 ≤
√
T (se′jΦ̂i − ξge′m)ϕ̂ ≤ −qsimg,α/2.

This algorithm is conceptually the same as for the grid MBB AR confidence sets used in

the paper, but step 2 now uses asymptotic simulation instead of the MBB to draw values

of A1, . . . , Ap, and ϕ. Further, we use the algorithmic approach in Section F to speed up

computation. We call these confidence sets “grid simulation AR” confidence sets.

Before discussing the results, we note that both the Rademacher wild bootstrap and the

MBB with Hall’s percentile intervals can be used for both IRFs and FEVDs. However, the

grid simulation AR confidence sets can only be used for normalized IRFs.

Coverage rates for normalized IRFs: Figure G.2 shows the coverage rates of 68%

MBB percentile intervals, grid MBB AR confidence sets, and MSW analytical sets for nor-

malized IRFs. These confidence intervals and sets are as described in the paper. Figure G.2

also shows the coverage rates of 68% Rademacher wild bootstrap percentile intervals, MBB

Hall’s percentile intervals, and grid simulation AR confidence sets for normalized IRFs.

Throughout this section and the next several sections, the legend of the figures are as fol-

lows. “MBB” is the standard percentile interval. “grid MBB AR” is the grid MBB Anderson

and Rubin (1949) confidence set. “MSW” is the Montiel Olea, Stock, and Watson (forth-

coming) analytical set. “WB-Rademacher” is the percentile interval from the Rademacher

wild bootstrap. “MBB Halls” is Hall’s percentile interval with the MBB. “grid Sim AR” is

the grid simulation AR confidence set.
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Figure G.2: Coverage rates of 68% confidence intervals for normalized IRFs. The solid
horizontal line shows the 0.68 target level.

The top and bottom panels of G.2 show the coverage rates for y1,t and y2,t, respectively.

The columns show coverage rates for different values of ψ. We normalize y1,t to fall by 1 on

impact and do this within every bootstrap loop. Hence, the coverage rates for y1,t are always

1 at horizon 0.

The Rademacher wild bootstrap produces coverage rates that are too low for both y1,t

and y2,t at every horizon and for every value of ψ. As discussed in Jentsch and Lunsford

(2016, 2019a,b) and in Section C.2, the Rademacher wild bootstrap asymptotically ignores

the uncertainty surrounding the estimates of Σu and H(1)Ψ′. Hence, it produces confidence

intervals that are too small and coverage rates that are too low.

For ψ = 1, the coverage rates of the MBB with Hall’s percentile intervals behave similarly

to the coverage rates of the MBB with the standard percentile intervals. The coverage rates

from Hall’s intervals are close to the target level at short horizons but become too low at
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Figure G.3: Average lengths of 68% confidence intervals for normalized IRFs.

longer horizons. For ψ = 0.32, the coverage rates from Hall’s intervals are very close to the

standard percentile intervals: above the target level at short horizons and falling to below the

target level at longer horizons. Unlike with the standard percentile intervals, the coverage

rates from Hall’s intervals are below the target level for every horizon with ψ = 0.17.

Finally, the coverage rates of the simulation AR grid confidence sets are very close to the

coverage rates of the MSW analytical confidence sets for both y1,t and y2,t at every horizon

and for every value of ψ.

Average lengths for normalized IRFs: Figure G.3 shows the average lengths of 68%

MBB percentile intervals, grid MBB AR confidence sets, and MSW analytical sets for nor-

malized IRFs. These lengths are as in the paper. Figure G.3 also shows the average lengths

of 68% Rademacher wild bootstrap percentile intervals, MBB Hall’s percentile intervals, and

grid simulation AR confidence sets for normalized IRFs. The left and right panels show av-

erage lengths for y1,t and y2,t, respectively. Because we normalize y1,t to fall by 1 on impact,

the average length for y1,t is always 0 at horizon 0.

Consistent with its low coverage rates in Figure G.2, the Rademacher wild bootstrap has

average lengths that are smaller than every other confidence interval or set.

As noted above, Hall’s percentile intervals essentially flip the standard percentile intervals

around the respective IRF or FEVD. Because of this, the MBB with Hall’s percentile interval

has the same lengths as the MBB with the standard percentile interval by construction.

Finally, the average lengths of the grid simulation AR confidence set are very similar to

those of the MSW analytical sets.

Coverage rates for FEVDs: Figure G.4 shows the coverage rates of the 68% MBB
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Figure G.4: Coverage rates of 68% confidence intervals for FEVDs. The solid horizontal line
shows the 0.68 target level.

percentile intervals for FEVDs as in the paper. Figure G.4 also shows the coverage rates of

the 68% Rademacher wild bootstrap percentile intervals and the MBB with Hall’s percentile

intervals for FEVDs. The top and bottom panels show the coverage rates for y1,t and y2,t,

respectively. The columns show coverage rates for different values of ψ.

As with the normalized IRFs, Figure G.4 shows that the Rademacher wild bootstrap

produces coverage rates for FEVDs that are too low for both y1,t and y2,t at every horizon

and for every value of ψ.

For ψ = 1, the MBB with Hall’s percentile interval has coverage rates that are generally

lower and farther from the target level than the MBB with the standard percentile interval.

This result contrasts with the coverage rates for normalized IRFs for ψ = 1. In the left

panels of Figure G.2, Hall’s percentile intervals have coverage rates that are generally closer

to target than the standard percentile intervals. Comparing the left panels of Figures G.2 and

39



G.4, we see that Hall’s percentile intervals do not strictly dominate the standard percentile

intervals in terms of coverage rates nor vice versa. Instead, the ranking of the interval types

may change depending on which statistic is of interest.

For ψ = 0.32 and ψ = 0.17, Figure G.4 shows that the Hall’s percentile intervals have

coverage rates for FEVDs that are too low at every horizon. In general, the coverage rates for

Hall’s percentile intervals are also farther from the target level than the standard percentile

intervals. The exception is for y1,t for horizons 2 and 3. As shown in Figure G.1, there is a

clear trough in the FEVD for y1,t at horizons 2 and 3. Overall, Figure G.4 show that Hall’s

percentile intervals can have coverage rates that are closer to target than standard percentile

intervals, but only for some variables and some horizons.

G.2 One Standard Deviation IRFs

In this section, we show coverage rates of confidence intervals for one standard deviation

IRFs. We do not show these in the body of the paper. However, they remain relevant as

researchers, e.g. Gertler and Karadi (2015), occasionally show one standard deviation IRFs

as their main results.

Figure G.5 shows the coverage rates of 68% MBB percentile intervals, Rademacher wild

bootstrap percentile intervals, and MBB Hall’s percentile intervals for one standard deviation

IRFs. The top and bottom panels show the coverage rates for y1,t and y2,t, respectively. The

columns show coverage rates for different values of ψ.

For both variables and all proxy strengths, the MBB percentile intervals have coverage

rates that are near the target level at short horizons but fall below the target level at longer

horizons. Overall, the coverage rates of the MBB percentile intervals do not appear to change

much with different values of ψ.

As with the normalized IRFs and FEVDs, Figure G.5 shows that the Rademacher wild

bootstrap produces coverage rates for one standard deviation IRFs that are too low for both

y1,t and y2,t at every horizon and for every value of ψ. For ψ = 1, the Rademacher wild

bootstrap’s coverage rates are similar to those from the MBB percentile interval at longer

horizons. However, with weaker proxy variables, the Rademacher wild bootstrap’s coverage

rates stay more persistently below those of the MBB percentile interval.

For ψ = 1, the MBB with Hall’s percentile intervals has coverage rates that are generally

below target. At short horizons, the coverage rates from Hall’s percentile intervals are slightly

below those of the standard percentile interval. However, at longer horizons, the coverage

rates from Hall’s percentile intervals are generally closer to target.
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Figure G.5: Coverage rates of 68% confidence intervals for one standard deviation IRFs.
The solid horizontal line shows the 0.68 target level.

As the proxy variable gets weaker, the coverage rates from Hall’s percentile intervals

become lower at shorter horizons. For ψ = 0.17, Hall’s percentile intervals has coverage

rates that are generally lower than those from the standard percentile intervals.

Overall, Figure G.5 shows us that which intervals, standard percentile or Hall’s per-

centile, have coverage rates that are closer to target can vary with impulse horizon and

proxy strength. Taken together with the coverage rates in Figures G.2 and G.4, our general

finding is that standard percentile intervals do not dominate Hall’s percentile intervals in

terms of coverage rates nor vice versa. Rather, which interval have coverage rates that are

closer to target can depend on the statistic that is begin computed, the variable in the VAR,

the horizon, and the proxy strength.
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G.3 95% Confidence Intervals

In this section, we show the results from the paper but with 95% confidence intervals instead

of 68% confidence intervals. The overall pattern of results does not change much when

switching from 68% confidence intervals to 95% confidence intervals. Because of this, we

simply provide descriptions of this figures without further discussion. Figure G.6 shows the

coverage rates of 95% confidence intervals for normalized IRFs. Figure G.7 shows the average

length of 95% confidence intervals for normalized IRFs. Figure G.8 shows the coverage

rates of 95% confidence intervals for FEVDs. Figure G.9 shows the coverage rates of 95%

confidence intervals for one standard deviation IRFs.

G.4 Results with T = 2000

In this section, we show results based on simulations with an effective sample size of T =

2000 in order to highlight certain asymptotic results. Because we increase the sample size,

we increase the block length to ` = 82. As in the paper, we only show results for 68%

confidence intervals and sets in this section. As in the paper, we show results for MBB

percentile intervals, the grid MBB AR confidence sets, and MSW analytic confidence sets.

Further, following the previous sections of this appendix, we show results for Rademacher

wild bootstraps, the MBB with Hall’s percentile intervals, and grid simulation AR confidence

sets.

Because we increase the sample size, we also adjust the values of ψ used in the DGP.

We continue to use ψ = 1 for a strong proxy setting. Pre-tests reject the presence of a weak

proxy in every simulation with ψ = 1. For the other DGPs, we use the weak proxy equation

ψT = C/
√
T . In the paper with T = 200, we use ψ = 0.32 and ψ = 0.17. Now with a sample

size of T = 2000, we use ψ = 0.32×
√

200/
√

2000 ≈ 0.101 as our middle proxy setting and

ψ = 0.17×
√

200/
√

2000 ≈ 0.054 as our weak proxy setting. With ψ = 0.101 and T = 2000,

pre-tests reject the presence of a weak proxy in roughly half of the simulations, similar to

the rejection rates with ψ = 0.32 and T = 200 in the paper. With ψ = 0.054 and T = 2000,

pre-tests reject the presence of a weak proxy in less than 10% of the simulations, similar to

the rejection rates with ψ = 0.17 and T = 200 in the paper.

Coverage Rates for normalized IRFs: Figure G.10 shows the coverage rates for

normalized IRFs. For ψ = 1, the coverage rates of all of the confidence intervals and sets

are all close to the target level and virtually indistinguishable at shorter horizons. The one

2We find that larger block sizes, such as ` = 12 or ` = 16, has only small effects on the results.
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Figure G.6: Coverage rates of 95% confidence intervals for normalized IRFs. The solid
horizontal line shows the 0.95 target level.
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Figure G.7: Average lengths of 95% confidence intervals for normalized IRFs.
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Figure G.8: Coverage rates of 95% confidence intervals for FEVDs. The solid horizontal line
shows the 0.95 target level.
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Figure G.9: Coverage rates of 95% confidence intervals for one standard deviation IRFs.
The solid horizontal line shows the 0.95 target level.
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Figure G.10: Coverage rates of 68% confidence intervals for normalized IRFs. The solid
horizontal line shows the 0.68 target level.

exception is the Rademacher wild bootstrap, which continues to have coverage rates that

are below target. This highlights that the invalidity of the wild bootstrap is an asymptotic

result and not just a feature of small sample sizes. With ψ = 1, the coverage rates of MBB

percentile intervals and grid MBB AR confidence sets fall below the target level. However,

these coverage rates are much closer to the target level than with T = 200 in the paper, and

they are similar to the coverage rates from the other confidence intervals and sets.

As the proxy variable gets weaker, the coverage rates of MBB percentile intervals and

Hall’s percentile intervals get farther away from the target level. This highlights that both

standard percentile and Hall’s percentile intervals can have coverage rates that are away

from the target with a weak proxy variable in with very large sample sizes. In contrast,

coverage rates of both types of grid AR confidence sets and coverage rates of the MSW

analytic confidence sets are near the target level with both ψ = 0.101 and ψ = 0.054.
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Figure G.11: Average length of 68% confidence intervals for normalized IRFs.

Finally, as the proxy variable gets weaker, the Rademacher wild bootstrap produces

increasingly small coverage rates. With ψ = 0.054, the Rademacher wild bootstrap’s coverage

rate never exceeds 0.2.

Average lengths for normalized IRFs: Figure G.11 shows the average length of the

confidence intervals and sets for normalized IRFs with ψ = 1. Except for the Rademacher

wild bootstrap, which always has the shortest average length, the average length of all

confidence intervals and sets are essentially the same. This is consistent with the very

similar coverage rates shown in the left panels in Figure G.10.

Coverage rates for FEVDs: Figure G.12 shows the coverage rates for FEVDs. For

ψ = 1, the coverage rates of the standard percentile intervals and Hall’s percentile intervals

from the MBB are close to the target level and essentially the same. For ψ = 0.101, the

coverage rates of the standard percentile intervals and Hall’s percentile intervals from the

MBB move away from the target level. In general, the coverage rates of the standard

percentile interval become too big and the coverage rates of Hall’s percentile interval become

too small. The exception is for y1,t and horizons 2 and 3. Again, we note that y1,t has a clear

trough in Figure G.1 at horizons 2 and 3. For ψ = 0.054, the coverage rates of the standard

percentile interval continue to become too big and the coverage rates of Hall’s percentile

interval continue to become too small. Again, the exception for y1,t and horizons 2 and 3.

Overall, the results in Figure G.12 are similar to the patterns in Figure G.4 for T = 200.

Finally, as in Figure G.10, coverage rates from the Rademacher wild bootstrap are too

low and become increasingly small as the proxy variable gets weaker.
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Figure G.12: Coverage rates of 68% confidence intervals for FEVDs. The solid horizontal
line shows the 0.68 target level.

G.5 Less Persistent VAR Data

We write the companion matrix for the VAR slope coefficients as[
A1 A2

I2 0

]
.

For the DGP used in the paper, the eignevalues of this companion matrix are 0.930, 0.634,

0.098+0.134i, and 0.098−0.134i, with i =
√
−1. The first eigenvalue, 0.930, is close to zero,

yielding a high degree of persistence that is common in VARs with macroeconomic data.

However, having an eigenvalue this close to 1 may cause small-sample biases in the estimates

of A1 and A2, causing the coverage rates of confidence intervals to be away from their target

levels. To study this further, we consider an alternative DGP with different values for A1
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Figure G.13: The one standard deviation IRF, normalized IRF and FEVD based on the
VAR slope coefficients in (G.1) and used only in Subsection G.5.

and A2 than what is used in the body of the paper. We use

A1 =

[
0.382 0.504

−0.053 1.065

]
and A2 =

[
−0.144 0

−0.144 −0.072

]
. (G.1)

The eigenvalues of the corresponding companion matrix are 0.746, 0.505, 0.098+0.134i, and

0.098− 0.134i. The first two eigenvalue are about 0.8 times the first two eigenvalues for the

DGP used in the paper. The complex eigenvalues are unchanged.

Figure G.13 shows the IRFs and FEVDs implied by this new DGP. The IRFs and FEVDs

continue to be hump-shaped as in Figure G.1. However, the IRFs in Figure G.13, revert to

zero more quickly than in Figure G.1.

Coverage rates for normalized IRFs: Figure G.14 shows the coverage rates of 68%

confidence intervals and sets for the normalized IRFs. This figure parallels Figure G.2, but
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Figure G.14: Coverage rates of 68% confidence intervals and sets for normalized IRFs. The
solid horizontal line shows the 0.68 target level.

with the less persistent DGP in (G.1). The top and bottom panels show the coverage rates

for y1,t and y2,t, respectively. The columns show coverage rates for different values of ψ. We

normalize y1,t to fall by 1 on impact and do this within every bootstrap loop. Hence, the

coverage rates for y1,t are always 1 at horizon 0.

For ψ = 1, the coverage rates of the MBB percentile intervals, the grid MBB AR confi-

dence sets, the MSW confidence sets, and the grid simulation AR confidence sets are slightly

below target at short horizons. At longer horizons, these confidence intervals and sets remain

slightly below the target level. However, compared to the coverage rates from the more per-

sistent DGP in Figure G.2, the coverage rates of the MBB percentile intervals, the grid MBB

AR confidence sets, the MSW confidence sets, and the grid simulation AR confidence sets in

Figure G.14 are much closer to target at longer horizons. Further, the coverage rates of the

MBB percentile intervals, the grid MBB AR confidence sets and the MSW confidence sets
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are essentially the same at horizons 19 and 20. These results suggest that the low coverage

rates at long horizons in the body of the paper and in G.2 are due to small-sample biases

caused by a persistent DGP. See Kilian (1998) for further discussion.

Another results worth noting for ψ = 1 is that the coverage rates of Hall’s percentile

intervals are below those of standard percentile intervals at longer horizons in Figure G.14.

This is the opposite of what we found for the more persistent DGP in Figure G.2. Again,

this highlights that neither Hall’s nor standard percetile intervals appear to dominate one

another in terms of coverage rates. Rather, which interval is better appears to vary.

For weaker proxy variables, MBB percentile intervals become oversized at short horizons

as in the body of the paper and in G.2. In contrast, the coverage rates of the grid MBB AR

confidence sets, the MSW confidence sets and the grid simulation AR confidence sets are

close to target at short horizons. At longer horizons, the coverage rates of the grid MBB AR

confidence sets, the MSW confidence set and the grid simulation AR confidence sets stay

closer to target than is the case in the body of the paper and in Figure G.2. With ψ = 0.17,

the MSW confidence sets and the grid simulation AR confidence sets can be oversized at

long horizons while the grid MBB AR confidence sets stay close to the target size.

The Rademacher wild bootstrap has coverage rates that are too low for both variables,

all proxy strengths, and every horizon. However, with this less persistent DGP, the coverage

rates of the Rademacher wild bootstrap are closer to target at longer horizons compared to

Figure G.2.

Average lengths for normalized IRFs: Figure G.15 shows the average lengths of

68% confidence intervals and sets for the normalized IRFs. This figure parallels Figure G.3,

but with the less persistent DGP in (G.1). The left and right panels show average lengths

for y1,t and y2,t, respectively. Because we normalize y1,t to fall by 1 on impact, the average

length for y1,t is always 0 at horizon 0.

Overall, the average lengths of all of the confidence intervals and sets are smaller in

Figure G.15 with the less persistent DGP compared to Figure G.3. It is also the case that

the average lengths of the MBB percentile intervals and the grid MBB AR confidence sets

stay closer to the average lengths of the MSW confidence sets and the grid simulation AR

confidence sets at longer horizons in Figure G.15 compared to Figure G.3. Finally, the

Rademacher wild bootstrap’s average lengths are generally the smallest but become similar

to the average lengths of the other confidence intervals and sets at horizons 10 and longer in

Figure G.15.

Coverage rates for FEVDs: Figure G.16 shows coverage rates of 68% confidence

intervals for the FEVDs. This figure parallels Figure G.4, but with the less persistent DGP
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Figure G.15: Average lengths of 68% confidence intervals for normalized IRFs.

in (G.1). The top and bottom panels show the coverage rates for y1,t and y2,t, respectively.

The columns show coverage rates for different values of ψ.

For y1,t, the MBB percentile interval’s coverage rates are generally lower in Figure G.16

compared to Figure G.4. For ψ = 0.17, the MBB percentile interval’s coverage rates are

much lower for y1,t in Figure G.16 than in Figure G.4. In contrast, the general pattern of

coverage rates for y2,t in Figure G.16 is similar to the pattern in Figure G.4. These results

show that the interaction of less VAR persistence and a weak proxy variable can materially

change, but will not necessarily change, the coverage rates for FEVDs.

G.6 More Persistent Stochastic Volatility

We now return to using the VAR slope coefficients from the body of the paper, but change the

stochastic volatility parameters of the structural shocks. In the body of the paper, we model

the structural shocks with εi,t = σi,twi,t for i = 1, 2 with wi,t
iid∼ N (0, 1), ln σi,t = (1−ρ) ln σ̄+

ρ lnσi,t−1 + σeei,t, and ei,t
iid∼ N (0, 1). The equation ln σi,t = (1 − ρ) ln σ̄ + ρ lnσi,t−1 + σeei,t

then governs the persistence and volatility of our stochastic volatility. In the paper, we

use ρ = 0.85 and σe = 0.15 and impose ln σ̄ = −σ2
e/(1 − ρ2). With these settings, the

unconditional distribution of lnσi,t is N (−0.081, 0.081).

In this section, we make the stochastic volatility more persistent, choosing ρ = 0.95.

This matches the stochastic volatility persistence of the shock with the most persistent

stochastic volatility in Fernández-Villaverde, Guerrón-Quintana, and Rubio-Ramı́rez (2010).

To isolate the effect of changing the degree of persistence, we then choose σe = 0.09. This
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Figure G.16: Coverage rates of 68% confidence intervals for FEVDs. The solid horizontal
line shows the 0.68 target level.

implies that the unconditional distribution of lnσi,t is N (−0.083, 0.083), closely matching

the unconditional distribution from the paper.

We show the coverage rates of 68% confidence intervals and sets for normalized IRFs in

Figure G.17, the average lengths of 68% confidence intervals and sets for the normalized IRFs

in Figure G.18, and the coverage rates of 68% confidence intervals for FEVDs in Figure G.19.

Overall, we find that the results for coverage rates and average lengths of confidence intervals

and sets for normalized IRFs are little changed with the increased persistence in stochastic

volatility. That is, the results in Figures G.17 and G.18 are very similar to the results in

Figures G.2 and G.3. Turning to coverage rates for confidence intervals for FEVDs, we find

that the coverage rates of the MBB percentile intervals for ψ = 1 are slightly lower in Figure

G.19 with the increased stochastic volatility persistence than in Figure G.4. Otherwise, the

results in the two figures are generally similar.
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Figure G.17: Coverage rates of 68% confidence intervals and sets for normalized IRFs. The
solid horizontal line shows the 0.68 target level.
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Figure G.18: Average lengths of 68% confidence intervals for normalized IRFs.
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Figure G.19: Coverage rates of 68% confidence intervals for FEVDs. The solid horizontal
line shows the 0.68 target level.
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G.7 A DGP with Censoring

In the body of the paper, we model the proxy variable with mt = ψε1,t+vt with vt
iid∼ N (0, 1).

In this section, we instead use mt = dt(ψε1,t + vt) in which dt ∈ {0, 1} is a random scalar

process that either censors mt to be zero or allows mt to take the value ψε1,t + vt. In this

section, we use Pr(dt = 0) = 0.4. This value falls in between Gertler and Karadi (2015),

in which Pr(dt = 0) is roughly 0.2, and Mertens and Ravn (2013), in which Pr(dt = 0) is

greater than 0.9.

In order to isolate the effects of censoring without weakening the proxy variable, we

change the values ψ in each DGP. We use ψ = 2.2 as our strong proxy DGP, ψ = 0.42 as

our middle proxy DGP, and ψ = 0.22 as our weak proxy DGP. We choose these values to

roughly match the distribution of F statistics that serve as pre-tests of proxy strength from

the body of the paper. With ψ = 2.2, the pre-tests reject the presence of a weak proxy

in every simulation. With ψ = 0.43, the pre-tests reject the presence of a weak proxy in

roughly half of the simulations. With ψ = 0.22, the pre-tests reject the presence of a weak

proxy in less than 10% of the simulations.

We show the coverage rates of 68% confidence intervals and sets for normalized IRFs

in Figure G.20, the average lengths of 68% confidence intervals and sets for the normalized

IRFs in Figure G.21, and the coverage rates of 68% confidence intervals for FEVDs in Figure

G.22. Overall, we find that censoring has little effect on the results. The coverage rates of

confidence intervals and sets for normalized IRFs are slightly lower at short horizons in

Figure G.20 compared to Figure G.2. Otherwise, the general pattern of coverage rates is

quite similar. We also find that the average lengths of confidence intervals and sets for the

normalized IRFs in Figure G.21 are similar to those in Figure G.3. Finally, there is very

little difference in the coverage rates of confidence intervals for FEVDs in Figures G.22 and

G.4.

G.8 Results with Lag Augmentation

In this section, we follow the spirit of Inoue and Kilian (2020) and use lag augmentation

to produce IRFs and FEVDs with the MBB. We make two notes before proceeding. First,

Inoue and Kilian (2020) study autoregressions – not vector autoregressions. Second, they

assume that the autoregression innovations are iid – not α-mixing. Because of this, we do

not have theory proving that lag augmentation is valid for proxy SVARs under α-mixing.

Rather, this section simply provides some simulation evidence that lag augmentation in the

spirit of Inoue and Kilian (2020) may potentially be extended to proxy SVARs.
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Figure G.20: Coverage rates of 68% confidence intervals and sets for normalized IRFs. The
solid horizontal line shows the 0.68 target level.
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Figure G.21: Average lengths of 68% confidence intervals for normalized IRFs.
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Figure G.22: Coverage rates of 68% confidence intervals for FEVDs. The solid horizontal
line shows the 0.68 target level.
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We begin by describing the MBB with lag augmentation. To initialize the algorithm, we

estimate the VAR intercepts and slope coefficients in

yt = ν + A1yt−1 + · · ·Apyt−p + Ap+1yt−p−1 + ut

with least squares. We denote the estimates with ν̂, Â1, . . . , Âp+1. We note that this VAR

includes p + 1 lags and not p lags. This additional lag is the lag augmentation from Inoue

and Kilian (2020). Because the assumption in the paper is that the data generating process

is a VAR(p), the true value of Ap+1 is OK×K and the asymptotic value of Âp+1 is also OK×K .

Next, as part of the initialization, we compute the VAR residuals using the estimated

slope coefficients for the p + 1 lags: ût = yt − ν̂ + Â1yt−1 + · · · + Âp+1yt−p−1. Under the

maintained assumption that we observe the data sample (y−p+1, . . . , y0, y1, . . . , yT ), we then

estimate T − 1 observations of ut from t = 2 to t = T .

Finally, as part of the initialization, choose a block length ` and compute N = [(T−1)/`],

where [·] rounds up to the nearest integer so that N` ≥ T−1. Next, collect the (K×`) blocks

Ûi = (ûi, . . . , ûi+`−1) for i = 2, . . . , T − ` + 1 and the (r × `) blocks Mi = (mi, . . . ,mi+`−1)

for i = 2, . . . , T − `+ 1.

With this initialization, the lag-augmented MBB is as follows

1. Independently draw N integers with replacement from the set {2, . . . , T−`−1}, putting

equal probability on each element of the set. Denote these integers as i1, . . . , iN .

2. Collect the blocks (Ûi1 , . . . , ÛiN ) and (Mi1 , . . . ,MiN ) and drop the last N`− (T − 1)

elements to produce (ũ∗2, . . . , ũ
∗
T ) and (m∗2, . . . ,m

∗
T ). As with the MBB in the paper,

we also use “ ∗ ” to denote bootstrap quantities from this lag-augmented MBB.

3. Center (ũ∗2, . . . , ũ
∗
T ) according to u∗j`+s = ũ∗j`+s − 1

T−`
∑T−1−`

r=0 ûs+r for s = 2, . . . , ` + 1

and j = 0, 1, . . . , N−1 in order to produce (u∗2, . . . , u
∗
T ) to assure that u∗t ’s are centered

conditionally on the data.

4. Set the initial condition (y∗−p+1, . . . , y
∗
0, y
∗
1) = (y−p+1, . . . , y0, y1). Use the initial con-

dition along with ν̂, Â1, . . . , Âp+1 and u∗t to recursively produce (y∗2, . . . , y
∗
T ) with

y∗t = ν̂ + Â1y
∗
t−1 + · · ·+ Âpy

∗
t−p + Âp+1y

∗
t−p−1 + u∗t .

5. Estimate ν̂∗, Â∗1, . . . , Â
∗
p+1 by least squares from the bootstrap sample (y∗−p+1, . . . , y

∗
T )

and set û∗t = y∗t − ν̂∗ + Â∗1y
∗
t−1 + · · ·+ Â∗p+1y

∗
t−p−1.
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6. Use û∗t and m∗t for t = 2, . . . , T to estimate Σ̂∗u = 1
T−1

∑T
t=2 û

∗
t û
∗′
t and Ĥ(1)Ψ′

∗
=

1
T−1

∑T
t=2 û

∗
tm
∗′
t .

7. Use Â∗1, . . . , Â
∗
p, but not Â∗p+1, to produce the bootstrapped VMA coefficients, Φ̂∗i for i =

0, 1, . . . . Then, use the VMA coefficients, Σ̂∗u and Ĥ(1)Ψ′
∗

to produce the bootstrapped

IRFs and FEVDs. In this step, use the same identification scheme as when computing

the point estimates of the IRFs and FEVDs. This includes the same sign and scale

normalizations.

We emphasize here that Â∗p+1 is effectively treated as 0K×K in step 7 and not used when

computing VMA coefficients, IRFs, or FEVDs. We repeat the algorithm a large number of

times and save the bootstrapped IRFs and FEVDs. We produce our confidence intervals with

a standard percentile interval by sorting the bootstrapped IRFs and FEVDs and keeping

the α/2 and 1− α/2 percentiles as the confidence interval.

For the grid MBB AR confidence sets, we use the computational approach in Section F.

The lag-augmented algorithm is

1. Construct a grid ξ = {ξ1, . . . ξG}, with ξg denoting one grid point, of null hypotheses

Ξj1,i(s;m, 1) = ξg.

2. Follow steps 1 through 7 of the lag-augmented residual-based MBB algorithm to com-

pute a large number of the bootstrapped estimates Â∗1, . . . , Â
∗
p, Â

∗
p+1 and ϕ̂∗ = Ĥ(1)ψ

∗
.

Use Â∗1, . . . , Â
∗
p, but not Â∗p+1, to compute Φ̂∗i for i = 0, 1, . . . .

3. For each grid point, use the bootstrapped estimates to compute
√
T (se′jΦ̂

∗
i−ξge′m)ϕ̂∗ for

each bootstrap loop. Compute the fraction of the bootstrapped values of
√
T (se′jφ̂

∗
i −

ξge
′
m)ϕ̂∗ that are less than or equal to zero.

4. Construct the confidence interval for Ξj1,i(s;m, 1) by including any grid point, ξg ∈ ξ,

with the property that the fraction in the previous step is between α/2 and 1− α/2.

We now show the simulation results for the lag-augmented MBB compared to the MBB

provided in the paper. We how four sets of results: coverage rates for normalized IRFs,

average lengths of confidence intervals for normalized IRFs, coverage rates for FEVDs, and

average lengths of confidence intervals for FEVDs. Overall, we find that the lag-augmented

MBB produces coverage rates that are closer to the target level, especially at longer horizons.

We also find that the average lengths of the confidence intervals from the lag-augmented MBB

60



can be much bigger at longer horizons. We only show results for the strong proxy variable

with ψ = 1.

Coverage rates for normalized IRFs: Figure G.23 shows the coverage rates of 68%

MBB percentile intervals and grid MBB AR confidence sets with and without lag augmenta-

tion for normalized IRFs. The coverage rates without lag augmentation are as in the paper:

near the target level at short horizons but too low at long horizons. With lag augmentation,

the coverage rates at short horizons are essentially unchanged. However, at horizons longer

than 10, the coverage rates with lag augmentation are generally closer to the target level

and are very close to the target level at horizons 17 through 20.

Average lengths for normalized IRFs: Figure G.24 shows the average lengths of

68% MBB percentile intervals and grid MBB AR confidence sets with and without lag

augmentation for normalized IRFs. The average lengths without lag augmentation are as in

the paper. At short horizons, the average lengths with lag augmentation are quite similar to

those without lag augmentation. However, the average lengths with lag augmentation are

much bigger at longer horizons – roughly 10 times bigger.

Coverage rates for FEVDs: Figure G.25 shows the coverage rates of 68% MBB

percentile intervals with and without lag augmentation for FEVDs. The coverage rates

without lag augmentation are as in the paper. With lag augmentation, the coverage rates of

y1,t are slightly closer to the target level. For y2,t, the coverage rates with lag augmentation

are essentially the same as without lag augmentation.

Average lengths for FEVDs: Figure G.26 shows the average lengths of 68% MBB

percentile intervals with and without lag augmentation for FEVDs. The average lengths

with lag augmentation are generally equal to or larger the average lengths without lag aug-

mentation; however, the differences are small. Overall, in contrast to the normalized IRFs,

we find that lag augmentation only has small effects on coverage rates and average lengths

of percentile intervals for FEVDs.

61



0 5 10 15 20
Horizon

0.0

0.2

0.4

0.6

0.8

1.0
Co

ve
ra

ge
 R

at
e

y1, t, T = 200, = 4, = 1

0 5 10 15 20
Horizon

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 R
at

e

y2, t, T = 200, = 4, = 1

MBB grid MBB AR MBB lag augment grid MBB AR lag augment

Figure G.23: Coverage rates of 68% confidence intervals for normalized IRFs. The solid
horizontal line shows the 0.68 target level.
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Figure G.24: Average lengths of 68% confidence intervals for normalized IRFs.
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Figure G.25: Coverage rates of 68% confidence intervals for FEVDs. The solid horizontal
line shows the 0.68 target level.
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Figure G.26: Average lengths of 68% confidence intervals for FEVDs.
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