Hinweis: Aufgrund von geplanten Wartungsarbeiten werden die Web-Auftritte der TU Dortmund am 17. April 2024, zwischen 18:00 und 20:00 Uhr mehrmals für kurze Zeit nicht erreichbar sein.
Wir bitten dadurch entstandene Unannehmlichkeiten zu entschuldigen und bedanken uns für Ihr Verständnis.
Zum Inhalt
Fakultät Statistik
Postdoc

Dr. Jonas Rieger

Kontakt

Technische Universität Dortmund
Fakultät Statistik
Lehrstuhl für Wirtschafts- und Sozialstatistik
CDI-Gebäude, Raum 3
44221 Dortmund

E-Mail: riegerstatistik.tu-dortmundde
Tel.: +49 231 755 5216

Persönliche Seite

Porträtfoto von Jonas Rieger © Felix Schmale​/​TU Dortmund
  • seit Oktober 2022: Postdoc
  • 2022-2023: NLP Scientist am Leibniz-Institut für Medienforschung │Hans-Bredow-Institut (HBI)
  • 2018-2022: Promotion in Statistik, TU Dortmund
  • 2016-2018: Wissenschaftliche Hilfskraft im Bereich Text Mining
  • 2016-2018: M.Sc. Statistik mit Schwerpunkt Informatik, TU Dortmund
  • 2013-2016: B.Sc. Statistik mit Schwerpunkt Informatik, TU Dortmund

Projekte:

  • Mitglied beim Dortmund Center for data-based Media Analysis (DoCMA).
  • Angestellt im MERCUR-Projekt NEAR: Narrative Economics Alliance Ruhr.
  • Förderung durch die TU Dortmund Young Academy für das Projekt The Era of ChatGPT: Evaluation and Regulation of Large Language Models.
  • Mitarbeit im EU-Projekt GADMO: German-Austrian Digital Media Observatory.
  • Mitarbeit im BMBF-Projekt FLACA: Few-Shot Learning for Automated Content Analysis in Communication Science.

Interessen:

  • Topic Modelle
    • Evaluierung (Qualität und Reliabilität)
    • Modellselektion und Parametertuning
    • Update Algorithmen
  • Erkennung von Strukturbrüchen, Ereignissen und Narrativen in Text Korpora
  • Few-Shot Text Klassifikation
  • Adapter für Transformer in Few-Shot Szenarien
  • Argument Mining in Diskursen der Nachrichten und Sozialen Medien
  • Text Korpus-basierte Indikatoren
  • Charakteristika der Verbreitung von Desinformation und Fake News
  • Inhaltsanalysen von politischen Texten und Tweets

GitHub Profil

Schauen Sie sich gerne auch die PsychTopics App an, die auf der Methode RollingLDA basiert, sowie The World of Topic Modeling in R (Wiedemann, 2022) für eine kurze Übersicht einiger R Pakete mit Bezug zu Topic Modeling.

ORCiD

  • Rieger, J., Yanchenko, K., Ruckdeschel, M., von Nordheim, G., Kleinen-von Königslöw, K. und Wiedemann, G. (2023, forthcoming). Few-shot learning for automated content analysis: Efficient coding of arguments and claims in the debate on arms deliveries to Ukraine. Accepted for Studies in Communication and Media.
  • Krause, C., Rieger, J., Flossdorf, J., Jentsch, C. und Beck, F. (2023). Visually Analyzing Topic Change Points in Temporal Text Collections. Vision, Modeling, and Visualization. DOI.
  • Rieger, J., Hornig, N., Flossdorf, J., Müller, H., Mündges, S., Jentsch, C., Rahnenführer, J. und Elmer, C. (2023). Debunking Disinformation with GADMO: A Topic Modeling Analysis of a Comprehensive Corpus of German-language Fact-Checks. Accepted for DiTox'23. Link. GitHub.
  • Rieger, J., Hornig, N., Schmidt, T. und Müller, H. (2023). Early Warning Systems? Building Time Consistent Perception Indicators for Economic Uncertainty and Inflation Using Efficient Dynamic Modeling. Proceedings of the 3rd Workshop on Modelling Uncertainty in the Financial World. Link. GitHub.
  • Bittermann, A. und Rieger, J. (2022). Finding scientific topics in continuously growing text corpora. Proceedings of the 3rd Workshop on Scholarly Document Processing. Link. GitHub. PsychTopics App. Poster.
  • Lange, K.-R., Rieger, J., Benner, N. und Jentsch, C. (2022). Zeitenwenden: Detecting changes in the German political discourse. Proceedings of the 2nd Workshop on Computational Linguistics for Political Text Analysis. pdf. GitHub.
  • Rieger, J., Lange, K.-R., Flossdorf, J. und Jentsch, C. (2022). Dynamic change detection in topics based on rolling LDAs. Proceedings of the Text2Story'22 Workshop. CEUR-WS 3117, 5-13. pdf. GitHub.
  • Rieger, J., Jentsch, C. und Rahnenführer, J. (2021). RollingLDA: An Update Algorithm of Latent Dirichlet Allocation to Construct Consistent Time Series from Textual Data. Findings of the Association for Computational Linguistics: EMNLP 2021, 2337-2347. DOI. GitHub.
  • von Nordheim, G., Rieger, J. und Kleinen-von Königslöw, K. (2021). From the fringes to the core – An analysis of right-wing populists’ linking practices in seven EU parliaments and Switzerland. Digital Journalism. DOI. GitHub. EJO.
  • von Nordheim, G., Koppers, L., Boczek, K., Rieger, J., Jentsch, C., Müller, H. und Rahnenführer, J. (2021). Die Entwicklung von Forschungssoftware als praktische Interdisziplinarität. M&K Medien & Kommunikationswissenschaft 69, 80-96. DOI.
  • Rieger, J., Jentsch, C. und Rahnenführer, J. (2020). Assessing the Uncertainty of the Text Generating Process using Topic Models. ECML PKDD 2020 Workshops. CCIS 1323, 385-396. DOI. GitHub.
  • Rieger, J. (2020). ldaPrototype: A method in R to get a Prototype of multiple Latent Dirichlet Allocations. Journal of Open Source Software, 5(51), 2181. DOI.
  • Rieger, J., Rahnenführer, J. und Jentsch, C. (2020). Improving Latent Dirichlet Allocation: On Reliability of the Novel Method LDAPrototype. Natural Language Processing and Information Systems, NLDB 2020. LNCS 12089, 118-125. DOI.
  • von Nordheim, G. und Rieger, J. (2020). Im Zerrspiegel des Populismus – Eine computergestützte Analyse der Verlinkungspraxis von Bundestagsabgeordneten auf Twitter. Publizistik 65, 403-424. DOI. GitHub. EJO.

Aktuelle Einreichungen

  • Rieger, J., Jentsch, C. und Rahnenführer, J.: LDAPrototype: A Model Selection Algorithm to Improve Reliability of Latent Dirichlet Allocation. DOI.
  • Faymonville, M., Riffo, J., Rieger, J. und Jentsch, C. (2023). spINAR: An R Package for Semiparametric and Parametric Estimation and Bootstrapping of Integer-Valued Autoregressive (INAR) Models. Review.

Preprints und Working Paper

  • Schmidt, T., Müller, H., Rieger, J., Schmidt, T. und Jentsch, C. (2023). Inflation Perception and the Formation of Inflation Expectations. Ruhr Economic Papers #1025. DOI TBA.
  • Lange, K.-R., Rieger, J. und Jentsch, C. (2022). Lex2Sent: A bagging approach to unsupervised sentiment analysis. arXiv. DOI. GitHub.
  • Shrub, Y., Rieger, J., Müller, H. und Jentsch, C. (2022). Text data rule - don't they? A study on the (additional) information of Handelsblatt data for nowcasting German GDP in comparison to established economic indicators. Ruhr Economic Papers #964. DOI.
  • Müller, H., Schmidt, T., Rieger, J., Hornig, N. and Hufnagel, L.M. (2023). The Inflation Attention Cycle: Updating the Inflation Perception Indicator (IPI) up to February 2023 - a Research Note. DoCMA Working Paper #13DOI. GitHub.
    Vorherige Ausgaben und zusätzliche Links: Handelsblatt (07/25/2022), An Increasing Sense of Urgency (06/30/2022), Handelsblatt (05/24/2022), Pressure is high (04/30/2022), Handelsblatt (03/10/2022), A German Inflation Narrative (02/28/2022).
  • Müller, H., Rieger, J. und Hornig, N. (2022). Vladimir vs. the Virus - a Tale of two Shocks. An Update on our Uncertainty Perception Indicator (UPI) to April 2022 - a Research Note. DoCMA Working Paper #11. DOI. GitHub.
    Vorherige Ausgaben"Riders on the Storm" (Q1 2021), "We’re rolling" (Q4 2020), "For the times they are a-changin'" (Q3 2020).
  • Jentsch, C., Mammen, E., Müller, H., Rieger, J. und Schötz, C. (2021). Text mining methods for measuring the coherence of party manifestos for the German federal elections from 1990 to 2021. DoCMA Working Paper #8. DOI. Spiegel Online.
  • Rieger, J. und von Nordheim, G. (2021). corona100d – German-language Twitter dataset of the first 100 days after Chancellor Merkel addressed the coronavirus outbreak on TV. DoCMA Working Paper #4. DOI. GitHub.

Weitere Publikationen

  • Bittermann, A., Müller, S. M., und Rieger, J. (2022). PsychTopics: Wie man den Überblick über die Forschungslandschaft der Psychologie behält. Open Password. Link.
  • Rieger, J. (2019). Mónica Bécue-Bertaut (2019): Textual Data Science with R. Statistical Papers 60, 1797-1798. DOI.

Dissertation

  • Rieger, J. (2022). Reliability evaluation and an update algorithm for the latent Dirichlet allocation. Dissertation. TU Dortmund University. DOI.

Eingeladene Vorträge

  • Keep rollin’! The abilities for monitoring growing corpora using RollingLDA. ZPID Lecture Series. Trier, Germany (12/2022). Recording.

Beiträge zu Konferenzen und Workshops

  • Few-shot learning for automated content analysis (FLACA) in the German media debate on arms deliveries to Ukraine. Digital Total. Hamburg, Germany (10/2023). Poster.
  • Debunking Disinformation with GADMO: A Topic Modeling Analysis of a Comprehensive Corpus of German-language Fact-Checks. DiTox'23 Workshop @LDK 2023. Vienna, Austria (09/2023).
  • Bekämpfung von Desinformation durch GADMO: Analyse eines umfassenden deutschsprachigen Faktencheck-Korpus mithilfe von Topic Modellen. Statistische Woche 2023. Dortmund, Germany (09/2023).
  • Scrutinizing ChatGPT against Few-Shot Learning with Adapter Extensions and XLM-RoBERTa: A Case Study on Identifying Claims, Arguments and their Stance in the German News Media Debate on Arms Deliveries to Ukraine. Statistische Woche 2023. Dortmund, Germany (09/2023).
  • Beyond "Master Frames": A Semi-automated Approach to Studying Viewpoint Diversity of the Media Discourse. ECREA PolComm 2023. Berlin, Germany (08/2023).
  • Few-shot learning for automated content analysis: Efficient coding of arguments and claims in the debate on arms deliveries to Ukraine. DGPuK 2023. Bremen, Germany (05/2023).
  • Early Warning Systems? Building Time Consistent Perception Indicators for Economic Uncertainty and Inflation Using Efficient Dynamic Modeling. MUFin'23 Workshop @AAAI 2023. Washington, DC, USA (02/2023). Pre-recording.
  • Finding scientific topics in contionuously growing text corpora. SDP'22 Workshop @COLING 2022. Gyeongju, Republic of Korea (10/2022). Pre-recording.
  • Monitoring consistent topics in continuously growing scientific text corpora. Statistische Woche 2022. Münster, Germany (09/2022).
  • Dynamic change detection in topics based on rolling LDAs. Text2Story'22 Workshop @ECIR 2022. Stavanger, Norway (04/2022). Pre-recording.
  • Improving the reliability of LDA results using LDAPrototype as selection criterion. DAGStat 2022. Hamburg, Germany (03/2022).
  • RollingLDA: An Update Algorithm of Latent Dirichlet Allocation to Construct Consistent Time Series from Textual Data. EMNLP 2021. Punta Cana, Dominican Republic (11/2021). Pre-recording.
  • Assessing the Uncertainty of the Text Generating Process using Topic Models. EDML'20 Workshop @ECML PKDD 2020. Online (09/2020).
  • Improving Latent Dirichlet Allocation: On Reliability of the Novel Method LDAPrototype. NLDB 2020. Online (06/2020).
  • Quantifizierung der Stabilität der Latent Dirichlet Allocation mithilfe von Clustering auf wiederholten Durchläufen. Statistische Woche 2019. Trier, Germany (09/2019).
  • Softwaretools für die Kommunikationsforschung. DGPuK 2019. Münster, Germany (05/2019).
  • Measuring Stability of Replicated LDA Runs. DAGStat 2019. Munich, Germany (03/2019).
  • Text as Data (WiSe 2023/24, 2022/23)
  • Data Mining Cup (SoSe 2023, 2022, 2021, 2020 , 2019)
  • Einführung in LaTeX (SoSe 2022, 2021, 2020, 2019)
  • Fallstudien I (WiSe 2021/22)
  • Schätzen und Testen (WiSe 2021/22)
  • Nichtparametrische Verfahren (WiSe 2020/21)
  • Seminar: Text Data meets Econometrics (WiSe 2020/21)
  • Entscheidungstheorie - Statistik VI (SoSe 2020)
  • Wahrscheinlichkeitstheorie - Statistik V (WiSe 2019/20)
  • Seminar: Textdatenanalyse (SoSe 2019)