Zum Inhalt


Auf dieser Seite finden Sie die aktuellen Einreichungen sowie Publikationen des Lehrstuhls für Wirtschafts- und Sozialstatistik.

Aktuelle Einreichungen

Shrub, Y., Rieger, J., Müller, H. und Jentsch, C. (2022). Text data rule - don't they? A study on the (additional) information of Handelsblatt data for nowcasting German GDP in comparison to established economic indicators. Ruhr Economic Papers #964DOILink.

Lange, K.-R., Reccius, M., Schmidt, T., Müller, H., Roos, M., und Jentsch, C. (2022).  Towards extracting collective economic narratives from texts. Ruhr Economic Papers #963. Link

Benner, N., Lange, K.-R., und Jentsch, C. (2022).  Named Entity Narratives. Ruhr Economic Papers #962Link

Dorn, M., Birke, M., und Jentsch, C.: Testing exogeneity in the functional linear regression model.

Flossdorf, J., Fried, R. und Jentsch, C.: Online Monitoring of Dynamic Networks Using Flexible Multivariate Control Charts. SFB 823 Discussion Paper 2021(33). DOI.

Flossdorf, J., Meyer, A., Artjuch, D., Schneider, J. und Jentsch, C.: Unsupervised Movement Detection in Indoor Positioning Systems. arXiv.

Faymonville, M., Jentsch, C., Weiß, C.H. und Aleksandrov, B.: Semiparametric Estimation of INAR Models using Roughness Penalization.

Aleksandrov, B., Weiß, C.H., Jentsch, C. und Faymonville, M.: Novel Goodness-of-Fit Tests for Binomial Count Time Series.

Aleksandrov, B., Weiß, C.H., Nik, S., Faymonville, M. und Jentsch, C.: Modelling and Diagnostic Tests for Poisson and Negative-binomial Count Time Series.

Krabel, T. M., Tran, T.N.T., Groll, A., Horn, D. und Jentsch, C.: Random boosting and random^2 forest – A random tree depth injection approach. arXiv.

Rieger, J., Jentsch, C. und Rahnenführer, J.: LDAprototype: A Model Selection Algorithm to Improve Reliability of Latent Dirichlet Allocation. DOI.

Jentsch, C., Müller, H., Mammen, E., Rieger, J. und Schötz, C.: Text mining methods for measuring the coherence of party manifestos for the German federal elections from 1990 to 2021. DoCMA Working Paper #8. DOI.

Blagov, B., Müller, H., Jentsch, C. und Schmidt, T.: The Investment Narrative - Improving Private Investment Forecasts with Media data. Ruhr Economic Papers #921. Link.

Walsh, C., Jentsch, C. und Hossain, S.T.: Weighted bootstrap consistency for matching estimators: the role of bias-correction. SFB 823 Discussion Paper 2021(8). DOI.

Walsh, C., Jentsch, C. und Hossain, S.T.: Nearest neighbor matching: Does the M-out-of-N bootstrap work when the naïve bootstrap fails? SFB 823 Discussion Paper 2021(5). DOI.

Reichold, K. und Jentsch, C.: A Bootstrap-Assisted Self-Normalization Approach to Inference in Cointegrating Regressions. arXiv.



Bittermann, A. und Rieger, J. (2022). Finding scientific topics in continuously growing text corpora. Angenommen für: Proceedings of the 3rd Workshop on Scholarly Document Processing (SDP).

Steinmetz, J. und Jentsch, C. (2022). Asymptotic Theory for Mack's Model. Insurance: Mathematics and Economics. DOI.

Faymonville, M., Jentsch, C., Weiß, C.H. und Aleksandrov, B. (2022). Semiparametric Estimation of INAR Models using Roughness Penalization. Angenommen für: Statistical Methods & Applications.

Lange, K.-R., Rieger, J., Benner, N. und Jentsch, C. (2022). Zeitenwenden: Detecting changes in the German political discourse. Proceedings of the 2nd Workshop on Computational Linguistics for Political Text Analysis. pdf. GitHub.

Rieger, J., Lange, K.-R., Flossdorf, J. und Jentsch, C. (2022). Dynamic change detection in topics based on rolling LDAs. Proceedings of the Text2Story'22 Work­shop. CEUR-WS 3117, 5-13. pdf. GitHub.


Prüser, J. (2021). Data-Based Priors for Vector Error Correction Models. International Journal of Forecasting. DOI.

Rieger, J., Jentsch, C. und Rahnenführer, J. (2021). RollingLDA: An Update Algorithm of Latent Dirichlet Allocation to Construct Consistent Time Series from Textual Data. Findings of the Association for Computational Linguistics: EMNLP 2021, 2337-2347. DOI. GitHub.

Jentsch, C. und Lunsford, K. (2021). Asymptotically Valid Bootstrap Inference for Proxy SVARs. Journal of Business and Economic Statistics 40(3). DOI. Supplement. Code.

von Nordheim, G., Rieger, J. und Kleinen-von Königslöw, K. (2021). From the fringes to the core – An analysis of right-wing populists’ linking practices in seven EU parliaments and Switzerland. Digital Journalism. DOI. GitHub. EJO.

Prüser, J. (2021). Forecasting US inflation using Markov Dimension Switching. Journal of Forecasting 40(3). DOI.

Jentsch, C. und Reichmann, L. (2021). Generalized Binary VAR Processes. Journal of Time series Analysis 43(2). DOI.

Prüser, J. (2021). The horseshoe prior for time-varying parameter VARs and Monetary Policy. Journal of Economic Dynamics and Control 129, 104-188. DOI.

Prüser, J. und Schmidt, T. (2021). The Regional Composition of National House Price Cycles in the US.  Regional Science and Urban Economics 87, 103-645. DOI.

Hanck, C. and Prüser J. (2021). A comparison of approaches to select the informativeness of priors in BVARs. Journal of Economics and Statistics 241(4), 501-525. DOI.

Flossdorf, J. und Jentsch, C. (2021). Change Detection in Dynamic Networks Using Network Characteristics. IEEE Transactions on Signal and Information Processing over Networks 7, 451-464. DOI.

Aleksandrov, B., Weiß, C.H. und Jentsch, C. (2021): Goodness-of-fit Tests for Poisson Count Time Series based on the Stein-Chen Identity. Statistica Neerlandica 76(1), 35-64. DOI.

Jentsch, C., Lee, E. R. und Mammen, E. (2021). Poisson reduced rank models with an application to political text data. Biometrika 108(2), 455-468. DOI.

von Nordheim, G., Koppers, L., Boczek, K., Rieger, J., Jentsch, C., Müller, H. und Rahnenführer, J. (2021). Die Entwicklung von Forschungssoftware als praktische Interdisziplinarität. M&K Medien & Kommunikationswissenschaft 69, 80-96. DOI.


Jentsch, C. und Kulik, R. (2020). Bootstrapping Hill estimator and tail array sums for regularly varying time series. Bernoulli 27(2), 1409-1439. DOI.

Jentsch, C. und Meyer, M. (2020). On the validity of Akaike's identity for random fields. Journal of Econometrics 222(1C), 676-687. DOI.

Rieger, J., Jentsch, C. und Rahnenführer, J. (2020). Assessing the Uncertainty of the Text Generating Process using Topic Models. ECML PKDD 2020 Workshops. CCIS 1323, 385-396. DOIGitHub.

Jentsch, C., Lee, E. R. und Mammen, E. (2020). Time-dependent Poisson reduced rank models for political text data analysis. Computational Statistics and Data Analysis 142, 106813. DOI.

Jentsch, C., Leucht, A., Meyer, M., und C. Beering (2020). Empirical characteristic functions-based estimation and distance correlation for locally stationary processes. Journal of Time Series Analysis 41, 110-133. DOI.

Rieger, J. (2020). ldaPrototype: A method in R to get a Prototype of multiple Latent Dirichlet Allocations. Journal of Open Source Software, 5(51), 2181. DOI.

Rieger, J., Rahnenführer, J. und Jentsch, C. (2020). Improving Latent Dirichlet Allocation: On Reliability of the Novel Method LDAPrototype. Natural Language Processing and Information Systems, NLDB 2020. LNCS 12089, 118-125. DOI.

Prüser, J. und Schmidt, T. (2020). The Regional Composition of National House Price Cycles in the US. Regional Science and Urban Economics 87. DOI.

Prüser, J. und Schlösser, A. (2020). On the time-varying Effects of Economic Policy Uncertainty on the US Economy. In: Oxford Bulletin of Economics and Statistics 82(5), 1217-1237. DOI.

Hanck, C. und Prüser J. (2020). House Prices and Interest Rates - Bayesian Evidence from Germany. Applied Economics 52(28), 3073-3089. DOI.

von Nordheim, G. und Rieger, J. (2020). Im Zerrspiegel des Populismus - Eine computergestützte Analyse der Verlinkungspraxis von Bundestagsabgeordneten auf Twitter. Publizistik 65. 403-424. DOI.


Jentsch, C. und Reichmann, L. (2019). Generalized Binary Time Series Models. Econometrics 7, 47. DOI.

Jentsch, C. und Lunsford, K. (2019). The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States: Comment. American Economic Review 109(7), 2655-2678. DOI. Supplement. Code.

Weiß, C. H. und Jentsch, C. (2019). Bootstrap-based Bias Corrections for INAR Count Time Series. Journal of Statistical Computation and Simulation 89(7), 1248-1264. DOI.

Jentsch, C. und C. H. Weiß (2019). Bootstrapping INAR models. Bernoulli 25(3), 2359-2408. DOIWorking Paper.

Prüser, J. (2019). Forecasting with many predictors using Bayesian Additive Regression Trees. Journal of Forecasting 38(7), 621-631. DOI.

Prüser, J. und Schlösser, A. (2019). The Effects of Economic Policy Uncertainty on European Economies: Evidence from a TVP-FAVAR. Empirical Economics 58, 2889-2910. DOI.

Vogt, M. und Walsh, C. (2019). Estimating Nonlinear Additive Models with Nonstationarities and Correlated Errors.  Scandinavian Journal of Statistics, 46(1), 160-199. DOI.

Rieger, J. (2019). Mónica Bécue-Bertaut: Textual Data Science with R. Statistical Papers 60, 1797-1798. DOI.


Weiß, C. H., Steuer, D., Jentsch, C. und Testik, M. C. (2018). Guaranteed Conditional ARL Performance in the Presence of Autocorrelation. Computational Statistics and Data Analysis 128, 367-379. DOI.

Prüser, J. (2018). Adaptive Learning from Model Space. Journal of Forecasting 38(1), 29-38. DOI.


Meyer, M., Jentsch, C. und Kreiss, J.-P. (2017). Baxter's Inequality and Sieve Bootstrap for Random Fields. Bernoulli 23(4B), 2988-3020. DOIWorking Paper.

Bandyopadhyay, S., Jentsch, C. und Subba Rao, S. (2017). A spectral domain test for stationarity of spatio-temporal data. Journal of Time Series Analysis 38(2), 326-351. DOI.


Jentsch, C. und Kirch, C. (2016). How much information does dependence between wavelet coefficients contain? Journal of the American Statistical Association 111(515), 1330-1345. DOI. pdf. Code.

Jentsch, C. und Steinmetz, J. (2016). A Connectedness Analysis of German Financial Institutions during the Financial Crisis in 2008. Banks and Bank Systems 11(4). DOI.

Jentsch, C. und Leucht, A. (2016). Bootstrapping sample quantiles of discrete data. Annals of the Institute of Statistical Mathematics 68(3), 491-539. DOIWorking Paper.

Brüggemann, R., Jentsch, C., und Trenkler, C. (2016). Inference in VARs with Conditional Heteroskedasticity of Unknown Form. Journal of Econometrics 191, 69-85. DOIpdf. Working Paper.


Jentsch, C. und Politis, D. N. (2015). Covariance matrix estimation and linear process bootstrap for multivariate time series of possibly increasing dimension. The Annals of Statistics 43(3), 1117-1140. DOIpdf. SupplementCode.

Czudaj, R. und Prüser J. (2015). International parity relationships between Germany and the USA revisited: evidence from the post-DM period. Applied Economics 47(26), 2745-2767. DOI.

Jentsch, C., Paparoditis, E., und Politis, D. N. (2015). Block bootstrap theory for multivariate integrated and cointegrated time series. Journal of Time Series Analysis 36(3), 416-441. DOIpdf.

Jentsch, C. und Pauly, M. (2015). Testing equality of spectral densities using randomization techniques. Bernoulli 21(2), 697-739. DOIpdfSupplement.

Jentsch, C. und Subba Rao, S. (2015). A test for second order stationarity of a multivariate time series. Journal of Econometrics 185(1), 124-161. DOIpdf. Code.


Jentsch, C. und Politis, D. N. (2013). Valid resampling of higher order statistics using linear process bootstrap and autoregressive sieve bootstrap. Communications in Statistics - Theory and Methods 42(7), 1277-1293. pdf.


Jentsch, C., Kreiss, J.-P., Mantalos, P. und Paparoditis, E. (2012). Hybrid bootstrap aided unit root testing. Computational Statistics 27(4), 779-797. DOI.

Jentsch, C. (2012). A new frequency domain approach of testing for covariance stationarity and for periodic stationarity in multivariate linear processes. Journal of Time Series Analysis 33(2), 177-192. DOIpdf.

Jentsch, C. und Mammen, E. (2012). Discussion on the paper "Bootstrap for dependent data: A review" by Jens-Peter Kreiss and Efstathios Paparoditis. Journal of the Korean Statistical Society 40(4), 391-392. DOI.

Jentsch, C. und Pauly, M. (2012). A note on periodogram-based distances for comparing spectral densities. Statistics and Probability Letters 82(1), 158-164. DOIpdf.


Jentsch, C. und Politis, D. N. (2011). The multivariate linear process bootstrap. In: Proceedings of the 17th European Young Statisticians Meeting (EYSM). pdf.


Jentsch, C. und Kreiss, J.-P. (2010). The multiple hybrid Bootstrap - Resampling multivariate linear processes. Journal of Multivariate Analysis 101(10), 2320-2345. DOIpdf.

Zum Seitenanfang

Anfahrt & Lageplan

Der Campus der Technischen Universität Dortmund liegt in der Nähe des Autobahnkreuzes Dortmund West, wo die Sauerlandlinie A45 den Ruhrschnellweg B1/A40 kreuzt. Die Abfahrt Dortmund-Eichlinghofen auf der A45 führt zum Campus Süd, die Abfahrt Dortmund-Dorstfeld auf der A40 zum Campus-Nord. An beiden Ausfahrten ist die Universität ausgeschildert.

Direkt auf dem Campus Nord befindet sich die S-Bahn-Station „Dortmund Universität“. Von dort fährt die S-Bahn-Linie S1 im 15- oder 30-Minuten-Takt zum Hauptbahnhof Dortmund und in der Gegenrichtung zum Hauptbahnhof Düsseldorf über Bochum, Essen und Duisburg. Außerdem ist die Universität mit den Buslinien 445, 447 und 462 zu erreichen. Eine Fahrplanauskunft findet sich auf der Homepage des Verkehrsverbundes Rhein-Ruhr, außerdem bieten die DSW21 einen interaktiven Liniennetzplan an.

Zu den Wahrzeichen der TU Dortmund gehört die H-Bahn. Linie 1 verkehrt im 10-Minuten-Takt zwischen Dortmund Eichlinghofen und dem Technologiezentrum über Campus Süd und Dortmund Universität S, Linie 2 pendelt im 5-Minuten-Takt zwischen Campus Nord und Campus Süd. Diese Strecke legt sie in zwei Minuten zurück.

Vom Flughafen Dortmund aus gelangt man mit dem AirportExpress innerhalb von gut 20 Minuten zum Dortmunder Hauptbahnhof und von dort mit der S-Bahn zur Universität. Ein größeres Angebot an internationalen Flugverbindungen bietet der etwa 60 Kilometer entfernte Flughafen Düsseldorf, der direkt mit der S-Bahn vom Bahnhof der Universität zu erreichen ist.

Interaktive Karte

Die Einrichtungen der Technischen Universität Dortmund verteilen sich auf den größeren Campus Nord und den kleineren Campus Süd. Zudem befinden sich einige Bereiche der Hochschule im angrenzenden Technologiepark.

Campus Lageplan Zum Lageplan